1,481 research outputs found
Kepler-18b,c, and d: A System of Three Planets Confirmed by Transit Timing Variations, Light Curve Validation, Warm-Spitzer Photometry, and Radial Velocity Measurements
We report the detection of three transiting planets around a Sun-like star, which we designate Kepler-18. The transit signals were detected in photometric data from the Kepler satellite, and were confirmed to arise from planets using a combination of large transit-timing variations (TTVs), radial velocity variations, Warm-Spitzer observations, and statistical analysis of false-positive probabilities. The Kepler-18 star has a mass of 0.97 M_☉, a radius of 1.1 R_☉, an effective temperature of 5345 K, and an iron abundance of [Fe/H] = +0.19. The planets have orbital periods of approximately 3.5, 7.6, and 14.9 days. The innermost planet "b" is a "super-Earth" with a mass of 6.9 ± 3.4 M_⊕, a radius of 2.00 ± 0.10 R_⊕, and a mean density of 4.9 ± 2.4 g cm^3. The two outer planets "c" and "d" are both low-density Neptune-mass planets. Kepler-18c has a mass of 17.3 ± 1.9 M_⊕, a radius of 5.49 ± 0.26 R_⊕, and a mean density of 0.59 ± 0.07 g cm^3, while Kepler-18d has a mass of 16.4 ± 1.4 M_⊕, a radius of 6.98 ± 0.33 R_⊕ and a mean density of 0.27 ± 0.03 g cm^3. Kepler-18c and Kepler-18d have orbital periods near a 2:1 mean-motion resonance, leading to large and readily detected TTVs
The Missouri soil saving dam : low-cost structure for use in farm plans for water management
Cover title."A revision of Bulletin 434" -- P. [3]
The Missouri soil saving dam : low-cost structure for use in farm plans for water management
Cover title
First High Contrast Imaging Using a Gaussian Aperture Pupil Mask
Placing a pupil mask with a gaussian aperture into the optical train of
current telescopes represents a way to attain high contrast imaging that
potentially improves contrast by orders of magnitude compared to current
techniques. We present here the first observations ever using a gaussian
aperture pupil mask (GAPM) on the Penn State near-IR Imager and Spectrograph
(PIRIS) at the Mt. Wilson 100 telescope. Two nearby stars were
observed, Eridani and Her A. A faint companion was detected
around Her A, confirming it as a proper motion companion. Furthermore,
the observed H and K magnitudes of the companion were used to constrain its
nature. No companions or faint structure were observed for Eridani.
We found that our observations with the GAPM achieved contrast levels similar
to our coronographic images, without blocking light from the central star. The
mask's performance also nearly reached sensitivities reported for other ground
based adaptive optics coronographs and deep HST images, but did not reach
theoretically predicted contrast levels. We outline ways that could improve the
performance of the GAPM by an order of magnitude or more.Comment: 8 pages, 4 figures, accepted by ApJ letter
Loss of infectivity of poliovirus 1 in river water under simulated field conditions
The effects of light, virus concentration, and turbidity on the rate of loss of infectivity (LOI) of poliovirus 1 were investigated in two test systems, which utilized flowing river water. Two levels of each variable were used in a 23 confounded factorial design. The seeded systems were sampled at regular intervals to establish LOI rates. Virus infectivity was measured by plaque assay. Loss of infectivity followed a two-component curve; an initial, rapid phase followed by a second, slower component. The slopes of the two components were examined by the analysis of variance to determine the potential influence of each variable. Both light and turbidity exerted a significant influence on the LOI rate in the second component of the LOI curve and also in the transition period between the two components; however, during the initial, rapid phase none of the variables influenced the LOI rate (at the 0.05 significance level). This research demonstrates the significance of light as a virucidal component in the aquatic environment.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23757/1/0000730.pd
Discovery of the Transiting Planet Kepler-5B
We present 44 days of high duty cycle, ultra precise photometry of the 13th magnitude star Kepler-5 (KIC 8191672, T(eff) = 6300 K, log g = 4.1), which exhibits periodic transits with a depth of 0.7%. Detailed modeling of the transit is consistent with a planetary companion with an orbital period of 3.548460 +/- 0.000032 days and a radius of 1.431(-0.052)(+0.041) R(J). Follow-up radial velocity measurements with the Keck HIRES spectrograph on nine separate nights demonstrate that the planet is more than twice as massive as Jupiter with a mass of 2.114(-0.059)(+0.056) M(J) and a mean density of 0.894 +/- 0.079 g cm(-3).NASA's Science Mission DirectorateAstronom
Recommended from our members
Kepler-4B: A Hot Neptune-Like Planet of A G0 Star Near Main-Sequence Turnoff
Early time-series photometry from NASA's Kepler spacecraft has revealed a planet transiting the star we term Kepler-4, at R.A. = 19(h)02(m)27.(s)68, delta = +50 degrees 08'08 '' 7. The planet has an orbital period of 3.213 days and shows transits with a relative depth of 0.87 x 10(-3) and a duration of about 3.95 hr. Radial velocity (RV) measurements from the Keck High Resolution Echelle Spectrometer show a reflex Doppler signal of 9.3(-1.9)(+1.1) m s(-1), consistent with a low-eccentricity orbit with the phase expected from the transits. Various tests show no evidence for any companion star near enough to affect the light curve or the RVs for this system. From a transit-based estimate of the host star's mean density, combined with analysis of high-resolution spectra, we infer that the host star is near turnoff from the main sequence, with estimated mass and radius of 1.223(-0.091)(+0.053) M(circle dot) and 1.487(-0.084)(+0.071) R(circle dot).We estimate the planet mass and radius to be {M(P), R(P)} = {24.5 +/- 3.8 M(circle plus), 3.99 +/- 0.21 R(circle plus)}. The planet's density is near 1.9 g cm(-3); it is thus slightly denser and more massive than Neptune, but about the same size.W. M. Keck FoundationNASA's Science Mission DirectorateAstronom
- …