951 research outputs found
Sparse Multivariate Factor Regression
We consider the problem of multivariate regression in a setting where the
relevant predictors could be shared among different responses. We propose an
algorithm which decomposes the coefficient matrix into the product of a long
matrix and a wide matrix, with an elastic net penalty on the former and an
penalty on the latter. The first matrix linearly transforms the
predictors to a set of latent factors, and the second one regresses the
responses on these factors. Our algorithm simultaneously performs dimension
reduction and coefficient estimation and automatically estimates the number of
latent factors from the data. Our formulation results in a non-convex
optimization problem, which despite its flexibility to impose effective
low-dimensional structure, is difficult, or even impossible, to solve exactly
in a reasonable time. We specify an optimization algorithm based on alternating
minimization with three different sets of updates to solve this non-convex
problem and provide theoretical results on its convergence and optimality.
Finally, we demonstrate the effectiveness of our algorithm via experiments on
simulated and real data
Analysis of error propagation in particle filters with approximation
This paper examines the impact of approximation steps that become necessary
when particle filters are implemented on resource-constrained platforms. We
consider particle filters that perform intermittent approximation, either by
subsampling the particles or by generating a parametric approximation. For such
algorithms, we derive time-uniform bounds on the weak-sense error and
present associated exponential inequalities. We motivate the theoretical
analysis by considering the leader node particle filter and present numerical
experiments exploring its performance and the relationship to the error bounds.Comment: Published in at http://dx.doi.org/10.1214/11-AAP760 the Annals of
Applied Probability (http://www.imstat.org/aap/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Large scale probabilistic available bandwidth estimation
The common utilization-based definition of available bandwidth and many of
the existing tools to estimate it suffer from several important weaknesses: i)
most tools report a point estimate of average available bandwidth over a
measurement interval and do not provide a confidence interval; ii) the commonly
adopted models used to relate the available bandwidth metric to the measured
data are invalid in almost all practical scenarios; iii) existing tools do not
scale well and are not suited to the task of multi-path estimation in
large-scale networks; iv) almost all tools use ad-hoc techniques to address
measurement noise; and v) tools do not provide enough flexibility in terms of
accuracy, overhead, latency and reliability to adapt to the requirements of
various applications. In this paper we propose a new definition for available
bandwidth and a novel framework that addresses these issues. We define
probabilistic available bandwidth (PAB) as the largest input rate at which we
can send a traffic flow along a path while achieving, with specified
probability, an output rate that is almost as large as the input rate. PAB is
expressed directly in terms of the measurable output rate and includes
adjustable parameters that allow the user to adapt to different application
requirements. Our probabilistic framework to estimate network-wide
probabilistic available bandwidth is based on packet trains, Bayesian
inference, factor graphs and active sampling. We deploy our tool on the
PlanetLab network and our results show that we can obtain accurate estimates
with a much smaller measurement overhead compared to existing approaches.Comment: Submitted to Computer Network
Multi-path Probabilistic Available Bandwidth Estimation through Bayesian Active Learning
Knowing the largest rate at which data can be sent on an end-to-end path such
that the egress rate is equal to the ingress rate with high probability can be
very practical when choosing transmission rates in video streaming or selecting
peers in peer-to-peer applications. We introduce probabilistic available
bandwidth, which is defined in terms of ingress rates and egress rates of
traffic on a path, rather than in terms of capacity and utilization of the
constituent links of the path like the standard available bandwidth metric. In
this paper, we describe a distributed algorithm, based on a probabilistic
graphical model and Bayesian active learning, for simultaneously estimating the
probabilistic available bandwidth of multiple paths through a network. Our
procedure exploits the fact that each packet train provides information not
only about the path it traverses, but also about any path that shares a link
with the monitored path. Simulations and PlanetLab experiments indicate that
this process can dramatically reduce the number of probes required to generate
accurate estimates
- β¦