1,754 research outputs found
Unsupervised Spoken Term Detection with Spoken Queries by Multi-level Acoustic Patterns with Varying Model Granularity
This paper presents a new approach for unsupervised Spoken Term Detection
with spoken queries using multiple sets of acoustic patterns automatically
discovered from the target corpus. The different pattern HMM
configurations(number of states per model, number of distinct models, number of
Gaussians per state)form a three-dimensional model granularity space. Different
sets of acoustic patterns automatically discovered on different points properly
distributed over this three-dimensional space are complementary to one another,
thus can jointly capture the characteristics of the spoken terms. By
representing the spoken content and spoken query as sequences of acoustic
patterns, a series of approaches for matching the pattern index sequences while
considering the signal variations are developed. In this way, not only the
on-line computation load can be reduced, but the signal distributions caused by
different speakers and acoustic conditions can be reasonably taken care of. The
results indicate that this approach significantly outperformed the unsupervised
feature-based DTW baseline by 16.16\% in mean average precision on the TIMIT
corpus.Comment: Accepted by ICASSP 201
Personalized Acoustic Modeling by Weakly Supervised Multi-Task Deep Learning using Acoustic Tokens Discovered from Unlabeled Data
It is well known that recognizers personalized to each user are much more
effective than user-independent recognizers. With the popularity of smartphones
today, although it is not difficult to collect a large set of audio data for
each user, it is difficult to transcribe it. However, it is now possible to
automatically discover acoustic tokens from unlabeled personal data in an
unsupervised way. We therefore propose a multi-task deep learning framework
called a phoneme-token deep neural network (PTDNN), jointly trained from
unsupervised acoustic tokens discovered from unlabeled data and very limited
transcribed data for personalized acoustic modeling. We term this scenario
"weakly supervised". The underlying intuition is that the high degree of
similarity between the HMM states of acoustic token models and phoneme models
may help them learn from each other in this multi-task learning framework.
Initial experiments performed over a personalized audio data set recorded from
Facebook posts demonstrated that very good improvements can be achieved in both
frame accuracy and word accuracy over popularly-considered baselines such as
fDLR, speaker code and lightly supervised adaptation. This approach complements
existing speaker adaptation approaches and can be used jointly with such
techniques to yield improved results.Comment: 5 pages, 5 figures, published in IEEE ICASSP 201
Reconstruction of human protein interolog network using evolutionary conserved network
<p>Abstract</p> <p>Background</p> <p>The recent increase in the use of high-throughput two-hybrid analysis has generated large quantities of data on protein interactions. Specifically, the availability of information about experimental protein-protein interactions and other protein features on the Internet enables human protein-protein interactions to be computationally predicted from co-evolution events (interolog). This study also considers other protein interaction features, including sub-cellular localization, tissue-specificity, the cell-cycle stage and domain-domain combination. Computational methods need to be developed to integrate these heterogeneous biological data to facilitate the maximum accuracy of the human protein interaction prediction.</p> <p>Results</p> <p>This study proposes a relative conservation score by finding maximal quasi-cliques in protein interaction networks, and considering other interaction features to formulate a scoring method. The scoring method can be adopted to discover which protein pairs are the most likely to interact among multiple protein pairs. The predicted human protein-protein interactions associated with confidence scores are derived from six eukaryotic organisms – rat, mouse, fly, worm, thale cress and baker's yeast.</p> <p>Conclusion</p> <p>Evaluation results of the proposed method using functional keyword and Gene Ontology (GO) annotations indicate that some confidence is justified in the accuracy of the predicted interactions. Comparisons among existing methods also reveal that the proposed method predicts human protein-protein interactions more accurately than other interolog-based methods.</p
- …