2 research outputs found

    Table_1_Highly reliable GIGA-sized synthetic human therapeutic antibody library construction.docx

    No full text
    BackgroundMonoclonal antibodies (mAbs) and their derivatives are the fastest expanding category of pharmaceuticals. Efficient screening and generation of appropriate therapeutic human antibodies are important and urgent issues in the field of medicine. The successful in vitro biopanning method for antibody screening largely depends on the highly diverse, reliable and humanized CDR library. To rapidly obtain potent human antibodies, we designed and constructed a highly diverse synthetic human single-chain variable fragment (scFv) antibody library greater than a giga in size by phage display. Herein, the novel TIM-3-neutralizing antibodies with immunomodulatory functions derived from this library serve as an example to demonstrate the library’s potential for biomedical applications.MethodsThe library was designed with high stability scaffolds and six complementarity determining regions (CDRs) tailored to mimic human composition. The engineered antibody sequences were optimized for codon usage and subjected to synthesis. The six CDRs with variable length CDR-H3s were individually subjected to β-lactamase selection and then recombined for library construction. Five therapeutic target antigens were used for human antibody generation via phage library biopanning. TIM-3 antibody activity was verified by immunoactivity assays.ResultsWe have designed and constructed a highly diverse synthetic human scFv library named DSyn-1 (DCB Synthetic-1) containing 2.5 × 1010 phage clones. Three selected TIM-3-recognizing antibodies DCBT3-4, DCBT3-19, and DCBT3-22 showed significant inhibition activity by TIM-3 reporter assays at nanomolar ranges and binding affinities in sub-nanomolar ranges. Furthermore, clone DCBT3-22 was exceptionally superior with good physicochemical property and a purity of more than 98% without aggregation.ConclusionThe promising results illustrate not only the potential of the DSyn-1 library for biomedical research applications, but also the therapeutic potential of the three novel fully human TIM-3-neutralizing antibodies.</p

    Discovery of Pyrrole−Indoline-2-ones as Aurora Kinase Inhibitors with a Different Inhibition Profile

    No full text
    A series of pyrrole−indolin-2-ones were synthesized, and their inhibition profile for Aurora kinases was studied. The potent compound 33 with phenylsulfonamido at the C-5 position and a carboxyethyl group at the C-3′ position selectively inhibited Aurora A over Aurora B with IC50 values of 12 and 156 nM, respectively. Replacement of the carboxyl group with an amino group led to compound 47, which retained the activity for Aurora B and lost activity for Aurora A (IC50 = 2.19 μM). Computation modeling was used to address the different inhibition profiles of 33 and 47. Compounds 47 and 36 (the ethyl ester analogue of 33) inhibited the proliferation of HCT-116 and HT-29 cells and suppressed levels of the phosphorylated substrates of Aurora A and Aurora B in the Western blots
    corecore