23 research outputs found

    Measuring Extinction Curves of Lensing Galaxies

    Full text link
    We critique the method of constructing extinction curves of lensing galaxies using multiply imaged QSOs. If one of the two QSO images is lightly reddened or if the dust along both sightlines has the same properties then the method works well and produces an extinction curve for the lensing galaxy. These cases are likely rare and hard to confirm. However, if the dust along each sightline has different properties then the resulting curve is no longer a measurement of extinction. Instead, it is a measurement of the difference between two extinction curves. This "lens difference curve'' does contain information about the dust properties, but extracting a meaningful extinction curve is not possible without additional, currently unknown information. As a quantitative example, we show that the combination of two Cardelli, Clayton, & Mathis (CCM) type extinction curves having different values of R(V) will produce a CCM extinction curve with a value of R(V) which is dependent on the individual R(V) values and the ratio of V band extinctions. The resulting lens difference curve is not an average of the dust along the two sightlines. We find that lens difference curves with any value of R(V), even negative values, can be produced by a combination of two reddened sightlines with different CCM extinction curves with R(V) values consistent with Milky Way dust (2.1 < R(V) < 5.6). This may explain extreme values of R(V) inferred by this method in previous studies. But lens difference curves with more normal values of R(V) are just as likely to be composed of two dust extinction curves with R(V) values different than that of the lens difference curve. While it is not possible to determine the individual extinction curves making up a lens difference curve, there is information about a galaxy's dust contained in the lens difference curves.Comment: 15 pages, 4 figues, ApJ in pres

    Joint analysis of psychiatric disorders increases accuracy of risk prediction for schizophrenia, bipolar disorder, and major depressive disorder

    Get PDF
    \ua9 2015 The Authors. This is an open access article under the CC BY-NC-ND license. Genetic risk prediction has several potential applications in medical research and clinical practice and could be used, for example, to stratify a heterogeneous population of patients by their predicted genetic risk. However, for polygenic traits, such as psychiatric disorders, the accuracy of risk prediction is low. Here we use a multivariate linear mixed model and apply multi-trait genomic best linear unbiased prediction for genetic risk prediction. This method exploits correlations between disorders and simultaneously evaluates individual risk for each disorder. We show that the multivariate approach significantly increases the prediction accuracy for schizophrenia, bipolar disorder, and major depressive disorder in the discovery as well as in independent validation datasets. By grouping SNPs based on genome annotation and fitting multiple random effects, we show that the prediction accuracy could be further improved. The gain in prediction accuracy of the multivariate approach is equivalent to an increase in sample size of 34% for schizophrenia, 68% for bipolar disorder, and 76% for major depressive disorders using single trait models. Because our approach can be readily applied to any number of GWAS datasets of correlated traits, it is a flexible and powerful tool to maximize prediction accuracy. With current sample size, risk predictors are not useful in a clinical setting but already are a valuable research tool, for example in experimental designs comparing cases with high and low polygenic risk

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.National Institutes of HealthVoRSUNY DownstatePsychiatry and Behavioral SciencesInstitute for Genomics in HealthN/

    A Genomewide Scan for Loci Involved in Attention-Deficit/Hyperactivity Disorder

    Get PDF
    Attention deficit/hyperactivity disorder (ADHD) is a common heritable disorder with a childhood onset. Molecular genetic studies of ADHD have previously focused on examining the roles of specific candidate genes, primarily those involved in dopaminergic pathways. We have performed the first systematic genomewide linkage scan for loci influencing ADHD in 126 affected sib pairs, using a ∼10-cM grid of microsatellite markers. Allele-sharing linkage methods enabled us to exclude any loci with a λs of ⩾3 from 96% of the genome and those with a λs of ⩾2.5 from 91%, indicating that there is unlikely to be a major gene involved in ADHD susceptibility in our sample. Under a strict diagnostic scheme we could exclude all screened regions of the X chromosome for a locus-specific λs of ⩾2 in brother-brother pairs, demonstrating that the excess of affected males with ADHD is probably not attributable to a major X-linked effect. Qualitative trait maximum LOD score analyses pointed to a number of chromosomal sites that may contain genetic risk factors of moderate effect. None exceeded genomewide significance thresholds, but LOD scores were >1.5 for regions on 5p12, 10q26, 12q23, and 16p13. Quantitative-trait analysis of ADHD symptom counts implicated a region on 12p13 (maximum LOD 2.6) that also yielded a LOD >1 when qualitative methods were used. A survey of regions containing 36 genes that have been proposed as candidates for ADHD indicated that 29 of these genes, including DRD4 and DAT1, could be excluded for a λs of 2. Only three of the candidates—DRD5, 5HTT, and CALCYON—coincided with sites of positive linkage identified by our screen. Two of the regions highlighted in the present study, 2q24 and 16p13, coincided with the top linkage peaks reported by a recent genome-scan study of autistic sib pairs
    corecore