3,360 research outputs found

    Application of the effective Fisher matrix to the frequency domain inspiral waveforms

    Full text link
    The Fisher matrix (FM) has been generally used to predict the accuracy of the gravitational wave parameter estimation. Although a limitation of the FM has been well known, it is still mainly used due to its very low computational cost compared to the Monte Carlo simulations. Recently, Rodriguez et al. [Phys. Rev. D 88, 084013 (2013)] performed Markov chain Monte Carlo (MCMC) simulations for nonspinning binary systems with total masses M20MM \leq 20 M_{\odot}, they found systematic differences between the predictions from FM and MCMC for M>10MM>10 M_{\odot}. On the other hand, an effective Fisher matrix (eFM) was recently introduced by Cho et al. [Phys. Rev. D 87, 24004 (2013)]. The eFM is a semi-analytic approach to the standard FM, in which the partial derivative is taken by a quadratic fitting function to the local overlap surface. In this work, we apply the eFM method to several nonspinning binary systems and find that the error bounds in eFM are qualitatively in good agreement with the MCMC results of Rodriguez et al. in all mass regions. In particular, we provide concrete examples showing an importance of taking into account the template-dependent frequency cutoff of the inspiral waveforms.Comment: 13 pages, 5figures; final version accepted for publication in CQG; changed significantly from v

    Gravitational waves from BH-NS binaries: Effective Fisher matrices and parameter estimation using higher harmonics

    Get PDF
    Inspiralling black hole-neutron star (BH-NS) binaries emit a complicated gravitational wave signature, produced by multiple harmonics sourced by their strong local gravitational field and further modulated by the orbital plane's precession. Some features of this complex signal are easily accessible to ground-based interferometers (e.g., the rate of change of frequency); others less so (e.g., the polarization content); and others unavailable (e.g., features of the signal out of band). For this reason, an ambiguity function (a diagnostic of dissimilarity) between two such signals varies on many parameter scales and ranges. In this paper, we present a method for computing an approximate, effective Fisher matrix from variations in the ambiguity function on physically pertinent scales which depend on the relevant signal to noise ratio. As a concrete example, we explore how higher harmonics improve parameter measurement accuracy. As previous studies suggest, for our fiducial BH-NS binaries and for plausible signal amplitudes, we see that higher harmonics at best marginally improve our ability to measure parameters. For non-precessing binaries, these Fisher matrices separate into intrinsic (mass, spin) and extrinsic (geometrical) parameters; higher harmonics principally improve our knowledge about the line of sight. For the precessing binaries, the extra information provided by higher harmonics is distributed across several parameters. We provide concrete estimates for measurement accuracy, using coordinates adapted to the precession cone in the detector's sensitive band.Comment: 19 pages, 11 figure

    Comparing Results of Five Glomerular Filtration Rate-Estimating Equations in the Korean General Population. MDRD Study, Revised Lund-Malmö, and Three CKD-EPI Equations

    Get PDF
    Estimated glomerular filtration rate (eGFR) is a widely used index of kidney function. Recently, new formulas such as the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations or the Lund-Malmö equation were introduced for assessing eGFR. We compared them with the Modification of Diet in Renal Disease (MDRD) Study equation in the Korean adult population. METHODS: The study population comprised 1,482 individuals (median age 51 [42-59] yr, 48.9% males) who received annual physical check-ups during the year 2014. Serum creatinine (Cr) and cystatin C (CysC) were measured. We conducted a retrospective analysis using five GFR estimating equations (MDRD Study, revised Lund-Malmö, and Cr and/or CysC-based CKD-EPI equations). Reduced GFR was defined as eGFR <60 mL/min/1.73 m². RESULTS: For the GFR category distribution, large discrepancies were observed depending on the equation used; category G1 (≥90 mL/min/1.73 m²) ranged from 7.4-81.8%. Compared with the MDRD Study equation, the other four equations overestimated GFR, and CysC-based equations showed a greater difference (-31.3 for CKD-EPI(CysC) and -20.5 for CKD-EPI(Cr-CysC)). CysC-based equations decreased the prevalence of reduced GFR by one third (9.4% in the MDRD Study and 2.4% in CKD-EPI(CysC)). CONCLUSIONS: Our data shows that there are remarkable differences in eGFR assessment in the Korean population depending on the equation used, especially in normal or mildly decreased categories. Further prospective studies are necessary in various clinical settings

    Molecular lens applied to benzene and carbon disulfide molecular beams

    Get PDF
    A molecular lens of the nonresonant dipole force formed by focusing a nanosecond IR laser pulse has been applied to benzene and CS2 molecular beams. Using the velocity map imaging technique for molecular ray tracing, characteristic molecular lens parameters including the focal length (f ), minimum beam width (W), and distance to the minimum beam width position (D) were determined. The laser intensity dependence of the observed lens parameters was in good agreement with theoretical predictions. W was independent of the laser peak intensity (I-0), whereas f and D varied linearly with 1/I-0. The differences in lens parameters between the molecular species were well correlated with the polarizability per mass values of the molecules. A high chromatographic resolution of Rs = 0.84 was achieved between the images of benzene molecular beams undeflected and deflected by the lens. The possibilities for a new type of chromatography are discussed.open293

    Strong carrier localization and diminished quantum-confined Stark effect in ultra-thin high-indium-content InGaN quantum wells with violet light emission

    Get PDF
    Here, we report on the optical and structural characteristics of violet-light-emitting, ultra-thin, high-Indium-content (UTHI) InGaN/GaN multiple quantum wells (MQWs), and of conventional low-In-content MQWs, which both emit at similar emission energies though having different well thicknesses and In compositions. The spatial inhomogeneity of In content, and the potential fluctuation in high-efficiency UTHI MQWs were compared to those in the conventional low-In-content MQWs. We conclude that the UTHI InGaN MQWs are a promising structure for achieving better quantum efficiency in the visible and near-ultraviolet spectral range, owing to their strong carrier localization and reduced quantum-confined Stark effect.open0
    corecore