81,170 research outputs found
Adaptive sensing performance lower bounds for sparse signal detection and support estimation
This paper gives a precise characterization of the fundamental limits of
adaptive sensing for diverse estimation and testing problems concerning sparse
signals. We consider in particular the setting introduced in (IEEE Trans.
Inform. Theory 57 (2011) 6222-6235) and show necessary conditions on the
minimum signal magnitude for both detection and estimation: if is a sparse vector with non-zero components then it
can be reliably detected in noise provided the magnitude of the non-zero
components exceeds . Furthermore, the signal support can be exactly
identified provided the minimum magnitude exceeds . Notably
there is no dependence on , the extrinsic signal dimension. These results
show that the adaptive sensing methodologies proposed previously in the
literature are essentially optimal, and cannot be substantially improved. In
addition, these results provide further insights on the limits of adaptive
compressive sensing.Comment: Published in at http://dx.doi.org/10.3150/13-BEJ555 the Bernoulli
(http://isi.cbs.nl/bernoulli/) by the International Statistical
Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
Relativistic Effects of Mixed Vector-Scalar-Pseudoscalar Potentials for Fermions in 1+1 Dimensions
The problem of fermions in the presence of a pseudoscalar plus a mixing of
vector and scalar potentials which have equal or opposite signs is
investigated. We explore all the possible signs of the potentials and discuss
their bound-state solutions for fermions and antifermions. The cases of mixed
vector and scalar P\"{o}schl-Teller-like and pseudoscalar kink-like potentials,
already analyzed in previous works, are obtained as particular cases
Unified Treatment of Mixed Vector-Scalar Screened Coulomb Potentials for Fermions
The problem of a fermion subject to a general mixing of vector and scalar
screened Coulomb potentials in a two-dimensional world is analyzed and
quantization conditions are found.Comment: 7 page
Bilayer graphene: gap tunability and edge properties
Bilayer graphene -- two coupled single graphene layers stacked as in graphite
-- provides the only known semiconductor with a gap that can be tuned
externally through electric field effect. Here we use a tight binding approach
to study how the gap changes with the applied electric field. Within a parallel
plate capacitor model and taking into account screening of the external field,
we describe real back gated and/or chemically doped bilayer devices. We show
that a gap between zero and midinfrared energies can be induced and externally
tuned in these devices, making bilayer graphene very appealing from the point
of view of applications. However, applications to nanotechnology require
careful treatment of the effect of sample boundaries. This being particularly
true in graphene, where the presence of edge states at zero energy -- the Fermi
level of the undoped system -- has been extensively reported. Here we show that
also bilayer graphene supports surface states localized at zigzag edges. The
presence of two layers, however, allows for a new type of edge state which
shows an enhanced penetration into the bulk and gives rise to band crossing
phenomenon inside the gap of the biased bilayer system.Comment: 8 pages, 3 fugures, Proceedings of the International Conference on
Theoretical Physics: Dubna-Nano200
A new construction of Lagrangians in the complex Euclidean plane in terms of planar curves
We introduce a new method to construct a large family of Lagrangian surfaces
in complex Euclidean plane by means of two planar curves making use of their
usual product as complex functions and integrating the Hermitian product of
their position and tangent vectors.
Among this family, we characterize minimal, constant mean curvature,
Hamiltonian stationary, solitons for mean curvature flow and Willmore surfaces
in terms of simple properties of the curvatures of the generating curves. As an
application, we provide explicitly conformal parametrizations of known and new
examples of these classes of Lagrangians in complex Euclidean plane.Comment: 15 pages, 5 figure
- …