1,485 research outputs found

    Nuclear data libraries for IFMIF-DONES neutronic calculations

    Get PDF
    International Fusion Materials Irradiation Facility-DEMO Oriented NEutron Source (IFMIF-DONES) is an installation aimed to irradiate with a high neutron flux materials relevant for the construction of the DEMOnstration fusion power plant (DEMO), in order to study the damage due to irradiation. Neutrons are generated using a 40 MeV and 125 mA deuteron beam impinging on a thick liquid lithium target. With these characteristics, damage due to irradiation comparable to that in the first wall of a fusion power reactor is achieved. In this paper we investigate the differences in the neutronic calculations of the IFMIF-DONES design when using different nuclear data libraries. We first studied the differences in neutron production due to Li(d, xn) reactions between different models and evaluations, comparing the different results with experimental data. Additionally, we tested the performance of the MCNP6.2 and Geant4 Monte Carlo codes when using deuteron incident data libraries. Then, we performed neutronic calculations of the IFMIF-DONES design using the most reliable Li(d, xn) neutron production models available, which are the FZK-2005 and JENDL/DEU-2020 evaluations according to the results obtained in the first part of the study. Thus, the differences in these evaluations are propagated to different neutronic calculation results: neutron flux, primary displacement damage, gas production, and heating in the materials to be irradiated. Finally, we also carried out these same neutronic calculations while using different nuclear data libraries for the neutron transport

    Measurement of the neutron capture cross section of the fissile isotope 235U with the CERN n_TOF Total Absorption Calorimeter and a fission tagging based on micromegas detectors

    Get PDF
    Actual and future nuclear technologies require more accurate nuclear data on the (n, gamma) cross sections and -ratios of fissile isotopes. Their measurement presents several difficulties, mainly related to the strong fission gamma-ray background competing with the weaker gamma-ray cascades used as the experimental signature of the (n,gamma) process. A specific setup has been used at the CERN n_TOF facility in 2012 for the measurement of the (n,gamma) cross section and alpha-ratios of fissile isotopes and used for the case of the 235U isotope. The setup consists in a set of micromegas fission detectors surrounding 235U samples and placed inside the segmented BaF2 Total Absorption Calorimeter.Postprint (published version

    Measurement of the 241Am neutron capture cross section at the n-TOF facility at CERN

    Get PDF
    New neutron cross section measurements of minor actinides have been performed recently in order to reduce the uncertainties in the evaluated data, which is important for the design of advanced nuclear reactors and, in particular, for determining their performance in the transmutation of nuclear waste. We have measured the 241 Am(n,ő≥) cross section at the n TOF facility between 0.2 eV and 10 keV with a BaF2 Total Absorption Calorimeter, and the analysis of the measurement has been recently concluded. Our results are in reasonable agreement below 20 eV with the ones published by C. Lampoudis et al. in 2013, who reported a 22% larger capture cross section up to 110 eV compared to experimental and evaluated data published before. Our results also indicate that the 241 Am(n,ő≥) cross section is underestimated in the present evaluated libraries between 20 eV and 2 keV by 25%, on average, and up to 35% for certain evaluations and energy ranges.Plan Nacional I+D+I FPA2014-53290-C2-1Comisi√≥n Europea, ANDES FP7- 249671Comisi√≥n Europea, CHANDA FP7-60520

    The rp-process and new measurements of beta-delayed proton decay of light Ag and Cd isotopes

    Full text link
    Recent network calculations suggest that a high temperature rp-process could explain the abundances of light Mo and Ru isotopes, which have long challenged models of p-process nuclide production. Important ingredients to network calculations involving unstable nuclei near and at the proton drip line are ő≤\beta-halflives and decay modes, i.e., whether or not ő≤\beta-delayed proton decay takes place. Of particular importance to these network calculation are the proton-rich isotopes 96^{96}Ag, 98^{98}Ag, 96^{96}Cd and 98^{98}Cd. We report on recent measurements of ő≤\beta-delayed proton branching ratios for 96^{96}Ag, 98^{98}Ag, and 98^{98}Cd at the on-line mass separator at GSI.Comment: 4 pages, uses espcrc1.sty. Proceedings of the 4th International Symposium Nuclei in the Cosmos, June 1996, Notre Dame/IN, USA, Ed. M. Wiescher, to be published in Nucl.Phys.A. Also available at ftp://ftp.physics.ohio-state.edu/pub/nucex/nic96-gs

    Nuclear Data for Sustainable Nuclear Energy

    Get PDF
    Final report of a coordinated action on nuclear data for industrial development in Europe (CANDIDE). The successful development of advanced nuclear systems for sustainable energy production depends on high-level modelling capabilities for the reliable and cost-effective design and safety assessment of such systems, and for the interpretation of key benchmark experiments needed for performance and safety evaluations. High-quality nuclear data, in particular complete and accurate information about the nuclear reactions taking place in advanced reactors and the fuel cycle, are an essential component of such modelling capabilities. In the CANDIDE project, nuclear data needs for sustainable nuclear energy production and waste management have been analyzed and categorized, on the basis of preliminary design studies of innovative systems. Meeting those needs will require that the quality of nuclear data files be considerably improved. The CANDIDE project has produced a set of recommendations, or roadmap, for sustainable nuclear data development. In conclusion, a substantial long-term investment in an integrated European nuclear data development program is called for, complemented by some dedicated actions targeting specific issues.JRC.D.5-Neutron physic

    Neutron capture measurements with high efficiency detectors and the Pulse Height Weighting Technique

    Get PDF
    Neutron capture cross section measurements in time-of-flight facilities are usually performed by detecting the prompt ő≥-rays emitted in the capture reactions. One of the difficulties to be addressed in these measurements is that the emitted ő≥-rays may change with the neutron energy, and therefore also the detection efficiency. To deal with this situation, many measurements use the so called Total Energy Detection (TED) technique, usually in combination with the Pulse Height Weighting Technique (PHWT). With it, it is sought that the detection efficiency depends only on the total energy of the ő≥-ray cascade, which does not vary much with the neutron energy. This technique was developed in the 1960s and has been used in many neutron capture experiments to date. One of the requirements of the technique is that ő≥-ray detectors have a low efficiency. This has meant that the PHWT has been used with experimental setups with low detection efficiencies. However, this condition does not have to be fulfilled by the experimental system as a whole. The main goal of this work is to show that it is possible to measure with a high efficiency detection system that uses the PHWT, and how to analyze the measured data.This work was supported in part by the I+D+i grant PGC2018- 096717-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by the European Commission H2020 Framework Programme project SANDA (Grant agreement ID: 847552)

    Measurement of the őĪ ratio and (n, ő≥) cross section of 235U from 0.2 to 200 eV at n_TOF

    Get PDF
    We measured the neutron capture-to-fission cross-section ratio (őĪ ratio) and the capture cross section of 235U between 0.2 and 200 eV at the n_TOF facility at CERN. The simultaneous measurement of neutron-induced capture and fission rates was performed by means of the n_TOF BaF2 Total Absorption Calorimeter (TAC), used for detection of ő≥ rays, in combination with a set of micromegas detectors used as fission tagging detectors. The energy dependence of the capture cross section was obtained with help of the 6 Li(n,t) standard reaction determining the n_TOF neutron fluence; the well-known integral of the 235U(n, f ) cross section between 7.8 and 11 eV was then used for its absolute normalization. The őĪ ratio, obtained with slightly higher statistical fluctuations, was determined directly, without need for any reference cross section. To perform the analysis of this measurement we developed a new methodology to correct the experimentally observed effect that the probabilities of detecting a fission reaction in the TAC and the micromegas detectors are not independent. The results of this work have been used in a new evaluation of 235U performed within the scope of the Collaborative International Evaluated Library Organisation (CIELO) Project, and are consistent with the ENDF/B-VIII.0 and JEFF-3.3 capture cross sections below 4 eV and above 100 eV. However, the measured capture cross section is on average 10% larger between 4 and 100 eV.Ministerio de Econom√≠a, Industria y Competitividad de Espa√Īa. FPA2014-53290-C2-1, FPA2016-76765- P y FPA2017-82647-P7¬ļ Programa Marco CHANDA de la Comisi√≥n Europea. FP7-60520
    • ‚Ķ
    corecore