42 research outputs found
A recombination-based method to characterize human BRCA1 missense variants
Purpose. Many missense variants in BRCA1 are of unclear clinical significance. Functional and genetic approaches have been proposed for elucidating the clinical significance of such variants. The purpose of the present study was to evaluate BRCA1 missense variants for their effect on both Homologous Recombination (HR) and Non Homologous End Joining (NHEJ). Methods. HR frequency evaluation: HeLaG1 cells, containing a stably integrated plasmid that allows to measure HR events by gene conversion events were transfected with the pcDNA3β expression vector containing the BRCA1-wild type (BRCA1-WT) or the BRCA1-Unclassified Variants (BRCA1-UCVs). The NHEJ was measured by a random plasmid integration assay. Results. This assays suggested a BRCA1 involvement mainly in the NHEJ. As a matter of fact, the Y179C and the A1789T variant altered significantly the NHEJ activity as compared to the wild type, suggesting that they may be related to BRCA1 associated pathogenicity by affecting this function. The variants N550H and I1766S, and the mutation M1775R did not alter the NHEJ frequency. Conclusions. These data, beside proposing a method for the study of BRCA1 variants effect on HR and NHEJ, highlighted the need for a range of functional assays to be performed in order to identify variants with altered function
Effects on human transcriptome of mutated BRCA1 BRCT domain: A microarray study
BACKGROUND: BRCA1 (breast cancer 1, early onset) missense mutations have been detected in familial breast and ovarian cancers, but the role of these variants in cancer predisposition is often difficult to ascertain. In this work, the molecular mechanisms affected in human cells by two BRCA1 missense variants, M1775R and A1789T, both located in the second BRCT (BRCA1 C Terminus) domain, have been investigated. Both these variants were isolated from familial breast cancer patients and the study of their effect on yeast cell transcriptome has previously provided interesting clues to their possible role in the pathogenesis of breast cancer. METHODS: We compared by Human Whole Genome Microarrays the expression profiles of HeLa cells transfected with one or the other variant and HeLa cells transfected with BRCA1 wild-type. Microarray data analysis was performed by three comparisons: M1775R versus wild-type (M1775RvsWT-contrast), A1789T versus wild-type (A1789TvsWT-contrast) and the mutated BRCT domain versus wild-type (MutvsWT-contrast), considering the two variants as a single mutation of BRCT domain. RESULTS: 201 differentially expressed genes were found in M1775RvsWT-contrast, 313 in A1789TvsWT-contrast and 173 in MutvsWT-contrast. Most of these genes mapped in pathways deregulated in cancer, such as cell cycle progression and DNA damage response and repair. CONCLUSIONS: Our results represent the first molecular evidence of the pathogenetic role of M1775R, already proposed by functional studies, and give support to a similar role for A1789T that we first hypothesized based on the yeast cell experiments. This is in line with the very recently suggested role of BRCT domain as the main effector of BRCA1 tumor suppressor activity
Myelodysplastic syndromes: advantages of a combined cytogenetic and molecular diagnostic workup
In this study we present a new diagnostic workup for the myelodysplastic syndromes (MDS) including FISH, aCGH, and somatic mutation assays in addition to the conventional cytogenetics (CC). We analyzed 61 patients by CC, FISH for chromosome 5, 7, 8 and PDGFR rearrangements, aCGH, and PCR for ASXL1, EZH2, TP53, TET2, RUNX1, DNMT3A, SF3B1 somatic mutations. Moreover, we quantified WT1 and RPS14 gene expression levels, in order to find their possible adjunctive value and their possible clinical impact. CC analysis showed 32% of patients with at least one aberration. FISH analysis detected chromosomal aberrations in 24% of patients and recovered 5 cases (13.5%) at normal karyotype (two 5q- syndromes, one del(7) case, two cases with PDGFR rearrangement). The aGCH detected 10 "new" unbalanced cases in respect of the CC, including one with alteration of the ETV6 gene. After mutational analysis, 33 patients (54%) presented at least one mutation and represented the only marker of clonality in 36% of all patients. The statistical analysis confirmed the prognostic role of CC either on overall or on progression-free-survival. In addition, deletions detected by aCGH and WT1 over-expression negatively conditioned survival. In conclusion, our work showed that 1) the addition of FISH (at least for chr. 5 and 7) can improve the definition of the risk score; 2) mutational analysis, especially for the TP53 and SF3B1, could better define the type of MDS and represent a "clinical warning"; 3) the aCGH use could be probably applied to selected cases (with suboptimal response or failure)
Characterisation of gene expression profiles of yeast cells expressing BRCA1 missense variants
Germline mutations in breast cancer susceptibility gene 1 (BRCA1) confer high risk of developing breast and ovarian cancers. Even though most BRCA1 cancer-predisposing mutations produce a non-functional truncated protein, 5-10% of them cause single amino acid substitutions. This second type of mutations represents a useful tool for examining BRCA1 molecular functions. Human BRCA1 inhibits cell proliferation in transformed Saccharomyces cerevisiae cells and this effect is abolished by disease-associated mutations in the BRCT domain. Moreover, BRCA1 mutations located both inside and outside the BRCT domain may induce an increase in the homologous recombination frequency in yeast cells. Here we present a microarray analysis of gene expression induced in yeast cells transformed with five BRCA1 missense variants, in comparison with gene expression induced by wildtype BRCA1. Data analysis was performed by grouping the BRCA1 variants into three sets: Recombination (R)-set (Y179C and S1164I), Recombination and Proliferation (RP)-set(I1766S and M1775R) and Proliferation (P)-set (A1789T), according to their effects on yeast cell phenotype. We found 470, 740 and 1136 differentially expressed genes in R-, P- and RP-set, respectively. Our results point to some molecular mechanisms critical for the control of cell proliferation and of genome integrity providing support to a possible pathogenic role of the analysed mutations. They also confirm that yeast, despite the absence of a BRCA1 homologue, represents a valid model system to examine BRCA1 molecular functions, as the molecular pathways activated by BRCA1 variants are conserved in humans
A Multisystem Mitochondrial Disease Caused by a Novel MT-TL1 mtDNA Variant: A Case Report
Background: Mitochondrial tRNA (MTT) genes are hotspot for mitochondrial DNA mutation and are responsible of half mitochondrial disease. MTT mutations are associated with a broad spectrum of phenotype often with complex multisystem involvement and complex genotype-phenotype correlations. MT-TL1 mutations, among which the m.3243A>G mutation is the most frequent, are associated with myopathy, maternal inherited diabetes and deafness, MELAS, cardiomyopathy, and focal segmental glomerulosclerosis.Case study: Here we report the case of an Italian 49-years old female presenting with encephalomyopathy, chronic proteinuric kidney disease and a new heteroplasmic m.3274 3275delAC MT-TL1 gene mutation.Conclusions: Our case demonstrates a systemic mitochondrial disease caused by the heteroplasmic m.3274 3275delAC MT-TL1 gene mutation, not yet described in the literature. A mitochondrial disease should be suspected in case of complex multisystem phenotypes, including steroid-resistant nephrotic syndrome with multisystemic involvement
Functional Interaction Between BRCA1 and DNA Repair in Yeast May Uncover a Role of RAD50, RAD51, MRE11A, and MSH6 Somatic Variants in Cancer Development
In this study, we determined if BRCA1 partners involved in DNA double-strand break (DSB) and mismatch repair (MMR) may contribute to breast and ovarian cancer development. Taking advantage the functional conservation of DNA repair pathways between yeast and human, we expressed several BRCA1 missense variants in DNA repair yeast mutants to identify functional interaction between BRCA1 and DNA repair in BRCA1-induced genome instability. The pathogenic p.C61G, pA1708E, p.M775R, and p.I1766S, and the neutral pS1512I BRCA1 variants increased intra-chromosomal recombination in the DNA-repair proficient strain RSY6. In the mre11, rad50, rad51, and msh6 deletion strains, the BRCA1 variants p.C61G, pA1708E, p.M775R, p.I1766S, and pS1215I did not increase intra-chromosomal recombination suggesting that a functional DNA repair pathway is necessary for BRCA1 variants to determine genome instability. The pathogenic p.C61G and p.I1766S and the neutral p.N132K, p.Y179C, and p.N550H variants induced a significant increase of reversion in the msh2Δ strain; the neutral p.Y179C and the pathogenic p.I1766S variant induced gene reversion also, in the msh6Δ strain. These results imply a functional interaction between MMR and BRCA1 in modulating genome instability. We also performed a somatic mutational screening of MSH6, RAD50, MRE11A, and RAD51 genes in tumor samples from 34 patients and identified eight pathogenic or predicted pathogenic rare missense variants: four in MSH6, one in RAD50, one in MRE11A, and two in RAD51. Although we found no correlation between BRCA1 status and these somatic DNA repair variants, this study suggests that somatic missense variants in DNA repair genes may contribute to breast and ovarian tumor development
Effects of BRCA2 cis-regulation in normal breast and cancer risk amongst BRCA2 mutation carriers.
INTRODUCTION: Cis-acting regulatory single nucleotide polymorphisms (SNPs) at specific loci may modulate penetrance of germline mutations at the same loci by introducing different levels of expression of the wild-type allele. We have previously reported that BRCA2 shows differential allelic expression and we hypothesize that the known variable penetrance of BRCA2 mutations might be associated with this mechanism. METHODS: We combined haplotype analysis and differential allelic expression of BRCA2 in breast tissue to identify expression haplotypes and candidate cis-regulatory variants. These candidate variants underwent selection based on in silico predictions for regulatory potential and disruption of transcription factor binding, and were functionally analyzed in vitro and in vivo in normal and breast cancer cell lines. SNPs tagging the expression haplotypes were correlated with the total expression of several genes in breast tissue measured by Taqman and microarray technologies. The effect of the expression haplotypes on breast cancer risk in BRCA2 mutation carriers was investigated in 2,754 carriers. RESULTS: We identified common haplotypes associated with differences in the levels of BRCA2 expression in human breast cells. We characterized three cis-regulatory SNPs located at the promoter and two intronic regulatory elements which affect the binding of the transcription factors C/EBPα, HMGA1, D-binding protein (DBP) and ZF5. We showed that the expression haplotypes also correlated with changes in the expression of other genes in normal breast. Furthermore, there was suggestive evidence that the minor allele of SNP rs4942440, which is associated with higher BRCA2 expression, is also associated with a reduced risk of breast cancer (per-allele hazard ratio (HR) = 0.85, 95% confidence interval (CI) = 0.72 to 1.00, P-trend = 0.048). CONCLUSIONS: Our work provides further insights into the role of cis-regulatory variation in the penetrance of disease-causing mutations. We identified small-effect genetic variants associated with allelic expression differences in BRCA2 which could possibly affect the risk in mutation carriers through altering expression levels of the wild-type allele.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Association between the BRCA2 N372H variant and male breast cancer risk: a population-based case-control study in Tuscany, Central Italy
Background: Male breast cancer (MBC) is a rare disease and little is known about its aetiology. Germline mutations of BRCA2 and, at lower frequency, of BRCA1 are implicated in a relatively small proportion of MBC cases. Common polymorphic variants in BRCA1 and BRCA2 genes may represent breast cancer (BC) susceptibility alleles and could be associated with a modestly increased risk of MBC at population level. Considering the relevant role of BRCA2 in MBC, we investigated whether the BRCA2 N372H variant, representing the only common non-synonymous polymorphism in BRCA2, might modulate the risk of BC in male populations.Methods: A case-control study was performed comparing a population-based series of 99 MBC cases, characterized for BRCA1 and BRCA2 mutations, with 261 male population controls, all residing in Tuscany, Central Italy. All MBC cases and controls were genotyped for the BRCA2 N372H allele by TaqMan allelic discrimination assays. To evaluate the genotype specific risk of the BRCA2 N372H variant, MBC carriers of germ-line BRCA1/2 mutations were excluded from the analyses.Results: No association emerged in univariate and age-adjusted analyses. Age-specific analyses suggested an increased risk for the HH homozygous genotype in subjects younger than 60 years. A statistically significant interaction emerged between this genotype and age (p = 0.032). When analyses were restricted to MBC cases enrolled in the first 4 years following diagnosis, a recessive model showed a significantly increased risk of MBC in HH subjects younger than 60 years (OR = 5.63; 95% CI = 1.70; 18.61).Conclusion: Overall, our findings, although based on a relatively small series, suggest that the BRCA2 HH homozygous genotype might be positively associated with an increased risk of MBC in men younger than 60 years
Exploring the link between MORF4L1 and risk of breast cancer.
INTRODUCTION: Proteins encoded by Fanconi anemia (FA) and/or breast cancer (BrCa) susceptibility genes cooperate in a common DNA damage repair signaling pathway. To gain deeper insight into this pathway and its influence on cancer risk, we searched for novel components through protein physical interaction screens. METHODS: Protein physical interactions were screened using the yeast two-hybrid system. Co-affinity purifications and endogenous co-immunoprecipitation assays were performed to corroborate interactions. Biochemical and functional assays in human, mouse and Caenorhabditis elegans models were carried out to characterize pathway components. Thirteen FANCD2-monoubiquitinylation-positive FA cell lines excluded for genetic defects in the downstream pathway components and 300 familial BrCa patients negative for BRCA1/2 mutations were analyzed for genetic mutations. Common genetic variants were genotyped in 9,573 BRCA1/2 mutation carriers for associations with BrCa risk. RESULTS: A previously identified co-purifying protein with PALB2 was identified, MRG15 (MORF4L1 gene). Results in human, mouse and C. elegans models delineate molecular and functional relationships with BRCA2, PALB2, RAD51 and RPA1 that suggest a role for MRG15 in the repair of DNA double-strand breaks. Mrg15-deficient murine embryonic fibroblasts showed moderate sensitivity to γ-irradiation relative to controls and reduced formation of Rad51 nuclear foci. Examination of mutants of MRG15 and BRCA2 C. elegans orthologs revealed phenocopy by accumulation of RPA-1 (human RPA1) nuclear foci and aberrant chromosomal compactions in meiotic cells. However, no alterations or mutations were identified for MRG15/MORF4L1 in unclassified FA patients and BrCa familial cases. Finally, no significant associations between common MORF4L1 variants and BrCa risk for BRCA1 or BRCA2 mutation carriers were identified: rs7164529, Ptrend = 0.45 and 0.05, P2df = 0.51 and 0.14, respectively; and rs10519219, Ptrend = 0.92 and 0.72, P2df = 0.76 and 0.07, respectively. CONCLUSIONS: While the present study expands on the role of MRG15 in the control of genomic stability, weak associations cannot be ruled out for potential low-penetrance variants at MORF4L1 and BrCa risk among BRCA2 mutation carriers.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are