126 research outputs found
Computational methods for random differential equations: probability density function and estimation of the parameters
[EN] Mathematical models based on deterministic differential equations do not take into account the inherent uncertainty of the physical phenomenon (in a wide sense) under study. In addition, inaccuracies in the collected data often arise due to errors in the measurements. It thus becomes necessary to treat the input parameters of the model as random quantities, in the form of random variables or stochastic processes. This gives rise to the study of random ordinary and partial differential equations.
The computation of the probability density function of the stochastic solution is important for uncertainty quantification of the model output. Although such computation is a difficult objective in general, certain stochastic expansions for the model coefficients allow faithful representations for the stochastic solution, which permits approximating its density function. In this regard, Karhunen-Loève and generalized polynomial chaos expansions become powerful tools for the density approximation. Also, methods based on discretizations from finite difference numerical schemes permit approximating the stochastic solution, therefore its probability density function.
The main part of this dissertation aims at approximating the probability density function of important mathematical models with uncertainties in their formulation. Specifically, in this thesis we study, in the stochastic sense, the following models that arise in different scientific areas: in Physics, the model for the damped pendulum; in Biology and Epidemiology, the models for logistic growth and Bertalanffy, as well as epidemiological models; and in Thermodynamics, the heat partial differential equation. We rely on Karhunen-Loève and generalized polynomial chaos expansions and on finite difference schemes for the density approximation of the solution.
These techniques are only applicable when we have a forward model in which the input parameters have certain probability distributions already set. When the model coefficients are estimated from collected data, we have an inverse problem. The Bayesian inference approach allows estimating the probability distribution of the model parameters from their prior probability distribution and the likelihood of the data. Uncertainty quantification for the model output is then carried out using the posterior predictive distribution.
In this regard, the last part of the thesis shows the estimation of the distributions of the model parameters from experimental data on bacteria growth. To do so, a hybrid method that combines Bayesian parameter estimation and generalized polynomial chaos expansions is used.[ES] Los modelos matemáticos basados en ecuaciones diferenciales deterministas no tienen en cuenta la incertidumbre inherente del fenómeno físico (en un sentido amplio) bajo estudio. Además, a menudo se producen inexactitudes en los datos recopilados debido a errores en las mediciones. Por lo tanto, es necesario tratar los parámetros de entrada del modelo como cantidades aleatorias, en forma de variables aleatorias o procesos estocásticos. Esto da lugar al estudio de las ecuaciones diferenciales aleatorias.
El cálculo de la función de densidad de probabilidad de la solución estocástica es importante en la cuantificación de la incertidumbre de la respuesta del modelo. Aunque dicho cálculo es un objetivo difícil en general, ciertas expansiones estocásticas para los coeficientes del modelo dan lugar a representaciones fieles de la solución estocástica, lo que permite aproximar su función de densidad. En este sentido, las expansiones de Karhunen-Loève y de caos polinomial generalizado constituyen herramientas para dicha aproximación de la densidad. Además, los métodos basados en discretizaciones de esquemas numéricos de diferencias finitas permiten aproximar la solución estocástica, por lo tanto, su función de densidad de probabilidad.
La parte principal de esta disertación tiene como objetivo aproximar la función de densidad de probabilidad de modelos matemáticos importantes con incertidumbre en su formulación. Concretamente, en esta memoria se estudian, en un sentido estocástico, los siguientes modelos que aparecen en diferentes áreas científicas: en Física, el modelo del péndulo amortiguado; en Biología y Epidemiología, los modelos de crecimiento logístico y de Bertalanffy, así como modelos de tipo epidemiológico; y en Termodinámica, la ecuación en derivadas parciales del calor. Utilizamos expansiones de Karhunen-Loève y de caos polinomial generalizado y esquemas de diferencias finitas para la aproximación de la densidad de la solución.
Estas técnicas solo son aplicables cuando tenemos un modelo directo en el que los parámetros de entrada ya tienen determinadas distribuciones de probabilidad establecidas. Cuando los coeficientes del modelo se estiman a partir de los datos recopilados, tenemos un problema inverso. El enfoque de inferencia Bayesiana permite estimar la distribución de probabilidad de los parámetros del modelo a partir de su distribución de probabilidad previa y la verosimilitud de los datos. La cuantificación de la incertidumbre para la respuesta del modelo se lleva a cabo utilizando la distribución predictiva a posteriori.
En este sentido, la última parte de la tesis muestra la estimación de las distribuciones de los parámetros del modelo a partir de datos experimentales sobre el crecimiento de bacterias. Para hacerlo, se utiliza un método híbrido que combina la estimación de parámetros Bayesianos y los desarrollos de caos polinomial generalizado.[CA] Els models matemàtics basats en equacions diferencials deterministes no tenen en compte la incertesa inherent al fenomen físic (en un sentit ampli) sota estudi. A més a més, sovint es produeixen inexactituds en les dades recollides a causa d'errors de mesurament. Es fa així necessari tractar els paràmetres d'entrada del model com a quantitats aleatòries, en forma de variables aleatòries o processos estocàstics. Açò dóna lloc a l'estudi de les equacions diferencials aleatòries.
El càlcul de la funció de densitat de probabilitat de la solució estocàstica és important per a quantificar la incertesa de la sortida del model. Tot i que, en general, aquest càlcul és un objectiu difícil d'assolir, certes expansions estocàstiques dels coeficients del model donen lloc a representacions fidels de la solució estocàstica, el que permet aproximar la seua funció de densitat. En aquest sentit, les expansions de Karhunen-Loève i de caos polinomial generalitzat esdevenen eines per a l'esmentada aproximació de la densitat. A més a més, els mètodes basats en discretitzacions mitjançant esquemes numèrics de diferències finites permeten aproximar la solució estocàstica, per tant la seua funció de densitat de probabilitat.
La part principal d'aquesta dissertació té com a objectiu aproximar la funció de densitat de probabilitat d'importants models matemàtics amb incerteses en la seua formulació. Concretament, en aquesta memòria s'estudien, en un sentit estocàstic, els següents models que apareixen en diferents àrees científiques: en Física, el model del pèndol amortit; en Biologia i Epidemiologia, els models de creixement logístic i de Bertalanffy, així com models de tipus epidemiològic; i en Termodinàmica, l'equació en derivades parcials de la calor. Per a l'aproximació de la densitat de la solució, ens basem en expansions de Karhunen-Loève i de caos polinomial generalitzat i en esquemes de diferències finites.
Aquestes tècniques només són aplicables quan tenim un model cap avant en què els paràmetres d'entrada tenen ja determinades distribucions de probabilitat. Quan els coeficients del model s'estimen a partir de les dades recollides, tenim un problema invers. L'enfocament de la inferència Bayesiana permet estimar la distribució de probabilitat dels paràmetres del model a partir de la seua distribució de probabilitat prèvia i la versemblança de les dades. La quantificació de la incertesa per a la resposta del model es fa mitjançant la distribució predictiva a posteriori.
En aquest sentit, l'última part de la tesi mostra l'estimació de les distribucions dels paràmetres del model a partir de dades experimentals sobre el creixement de bacteris. Per a fer-ho, s'utilitza un mètode híbrid que combina l'estimació de paràmetres Bayesiana i els desenvolupaments de caos polinomial generalitzat.This work has been supported by the Spanish Ministerio de Economía y Competitividad grant MTM2017–89664–P.Calatayud Gregori, J. (2020). Computational methods for random differential equations: probability density function and estimation of the parameters [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/138396TESISPremios Extraordinarios de tesis doctorale
On the convergence of the mild random walk algorithm to generate random one-factorizations of complete graphs
The complete graph Kn, for n even, has a one-factorization (proper edge coloring) with n – 1 colors. In the recent contribution [Dotan M., Linial N. (2017). ArXiv:1707.00477v2], the authors raised a conjecture on the convergence of the mild random walk on the Markov chain whose nodes are the colorings of Kn. The mild random walk consists in moving from a coloring C to a recoloring C′ if and only if ϕ(C′) ≤ ϕ(C), where ϕ is the potential function that takes its minimum at one-factorizations. We show the validity of such algorithm with several numerical experiments that demonstrate convergence in all cases (not just asymptotically) with polynomial cost. We prove several results on the mild random walk, we study deeply the properties of local minimum colorings, we give a detailed proof of the convergence of the algorithm for K4 and K6, and we raise new conjectures. We also present an alternative to the potential measure ϕ by consider the Shannon entropy, which has a strong parallelism with ϕ from the numerical standpoint
Analysis of the random heat equation via approximate density functions
[EN] In this paper we study the randomized heat equation with homogeneous boundary conditions. The diffusion coefficient is assumed to be a random
variable and the initial condition is treated as a stochastic process. The solution of
this randomized partial differential equation problem is a stochastic process, which is
given by a random series obtained via the classical method of separation of variables.
Any stochastic process is determined by its finite-dimensional joint distributions. In
this paper, the goal is to obtain approximations to the probability density function of
the solution (the first finite-dimensional distributions) under mild conditions. Since the
solution is expressed as a random series, we perform approximations to its probability
density function. Several illustrative examples are shown.This work has been supported by the Spanish Ministerio de Economia,
Industria y Competitividad (MINECO), the Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER UE) grant MTM2017-89664-P.Calatayud, J.; Cortés, J. (2021). Analysis of the random heat equation via approximate density functions. Romanian Reports in Physics. 73(2):1-10. http://hdl.handle.net/10251/181144S11073
Spatio-temporal stochastic differential equations for crime incidence modeling
We propose a methodology for the quantitative fitting and forecasting of real spatio-temporal crime data, based on
stochastic differential equations. The analysis is focused on the city of Valencia, Spain, for which 90247 robberies and
thefts with their latitude-longitude positions are available for a span of eleven years (2010–2020) from records of the
112-emergency phone. The incidents are placed in the 26 zip codes of the city (46001–46026), and monthly time series of
crime are built for each of the zip codes. Their annual-trend components are modeled by Itoˆ diffusion, with jointly
correlated noises to account for district-level relations. In practice, this study may help simulate spatio-temporal situations
and identify risky areas and periods from present and past data.Funding for open access charge: CRUE-Universitat Jaume
A phenomenological model for COVID-19 data taking into account neighboring-provinces effect and random noise
We model the incidence of the COVID-19 disease during the first wave of the epidemic
in Castilla-Leon (Spain). Within-province dynamics may be governed by a generalized logistic
map, but this lacks of spatial structure. To couple the provinces, we relate the daily new infec-
tions through a density-independent parameter that entails positive spatial correlation. Pointwise
values of the input parameters are fitted by an optimization procedure. To accommodate the
significant variability in the daily data, with abruptly increasing and decreasing magnitudes, a
random noise is incorporated into the model, whose parameters are calibrated by maximum like-
lihood estimation. The calculated paths of the stochastic response and the probabilistic regions
are in good agreement with the data
A modified perturbation method for mathematical models with randomness: An analysis through the steady-state solution to Burgers’ PDE
The variability of the data and the incomplete knowledge of the true physics require the incorporation of randomness into the formulation of mathematical models. In this setting, the deterministic numerical methods cannot capture the propagation of the uncertainty from the inputs to the model output. For some problems, such as the Burgers' equation (simplification to understand properties of the Navier–Stokes equations), a small variation in the parameters causes nonnegligible changes in the output. Thus, suitable techniques for uncertainty quantification must be used. The generalized polynomial chaos (gPC) method has been successfully applied to compute the location of the transition layer of the steady-state solution, when a small uncertainty is incorporated into the boundary. On the contrary, the classical perturbation method does not give reliable results, due to the uncertainty magnitude of the output. We propose a modification of the perturbation method that converges and is comparable with the gPC approach in terms of efficiency and rate of convergence. The method is even applicable when the input random parameters are dependent random variables
Probabilistic analysis of a class of 2D-random heat equations via densities
We give new probabilistic results for a class of random two-dimensional homogeneous heat equations with mixed homogeneous Dirichlet and Neumann boundary conditions and an arbitrary initial condition on a rectangular domain. The diffusion coefficient is assumed to be an arbitrary second-order random variable, while the initial condition is a stochastic process admitting a Karhunen-Loève expansion. We then construct pointwise convergent approximations for the main moments and the density of the solution. The theoretical results are numerically illustrated.J.-C. Cortés has been supported by the Spanish Agencia Estatal de Investigación, Spain grant PID2020-115270GB-I00. V. Bevia has been supported by the Programa de Ayudas de Investigación y Desarrollo (PAID), Spain
Approximate solutions of randomized non-autonomous complete linear differential equations via probability density functions
Solving a random differential equation means to obtain an exact or
approximate expression for the solution stochastic process, and to compute its
statistical properties, mainly the mean and the variance functions. However, a
major challenge is the computation of the probability density function of the
solution. In this article we construct reliable approximations of the probability
density function to the randomized non-autonomous complete linear differential equation by assuming that the diffusion coefficient and the source term are
stochastic processes and the initial condition is a random variable. The key
tools to construct these approximations are the random variable transformation technique and Karhunen-Lo`eve expansions. The study is divided into a
large number of cases with a double aim: firstly, to extend the available results
in the extant literature and, secondly, to embrace as many practical situations
as possible. Finally, a wide variety of numerical experiments illustrate the
potentiality of our findings
On the random wave equation within the mean square context
This paper deals with the random wave equation on a bounded domain with Dirichlet boundary conditions. Randomness arises from the velocity wave, which is a positive random variable, and the two initial conditions, which are regular stochastic processes. The aleatory nature of the inputs is mainly justified from data errors when modeling the motion of a vibrating string. Uncertainty is propagated from these inputs to the output, so that the solution becomes a smooth random field. We focus on the mean square contextualization of the problem. Existence and uniqueness of the exact series solution, based upon the classical method of separation of variables, are rigorously established. Exact series for the mean and the variance of the solution process are obtained, which converge at polynomial rate. Some numerical examples illustrate these facts
A theoretical study of a short rate model
Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2016, Director: José Manuel Corcuera ValverdeThe goal of this project is to do a theoretical study of a short interest rate model under the risk neutral probability, which is able to represent long range dependence.
In order to do this, it will be explained the necessary literature to understand the model.
Furthermore, we will expose the consequences of adapting this model for evaluating bonds and derivatives. In order to do this, we will use ambit processes which in general are not semimartingales.
Our purpose is to see if these new models can capture the features of the bond market by extending popular models like the Vasicek model
- …