1,483 research outputs found
Identifying common problems in the acquisition and deployment of large-scale software projects in the US and UK healthcare systems
Public and private organizations are investing increasing amounts into the development of
healthcare information technology. These applications are perceived to offer numerous benefits.
Software systems can improve the exchange of information between healthcare facilities. They
support standardised procedures that can help to increase consistency between different service
providers. Electronic patient records ensure minimum standards across the trajectory of care when
patients move between different specializations. Healthcare information systems also offer economic
benefits through efficiency savings; for example by providing the data that helps to identify potential
bottlenecks in the provision and administration of care. However, a number of high-profile failures
reveal the problems that arise when staff must cope with the loss of these applications. In particular,
teams have to retrieve paper based records that often lack the detail on electronic systems.
Individuals who have only used electronic information systems face particular problems in learning
how to apply paper-based fallbacks. The following pages compare two different failures of
Healthcare Information Systems in the UK and North America. The intention is to ensure that future
initiatives to extend the integration of electronic patient records will build on the ‘lessons learned’
from previous systems
Applying the lessons of the attack on the World Trade Center, 11th September 2001, to the design and use of interactive evacuation simulations
The collapse of buildings, such as terminal 2E at Paris' Charles de Gaule Airport, and of fires, such as the Rhode Island, Station Night Club tragedy, has focused public attention on the safety of large public buildings. Initiatives in the United States and in Europe have led to the development of interactive simulators that model evacuation from these buildings. The tools avoid some of the ethical and legal problems from simulating evacuations; many people were injured during the 1993 evacuation of the World Trade Center (WTC) complex. They also use many concepts that originate within the CHI communities. For instance, some simulators use simple task models to represent the occupants' goal structures as they search for an available exit. However, the recent release of the report from the National Commission on Terrorist Attacks upon the United States (the '9/11 commission') has posed serious questions about the design and use of this particular class of interactive systems. This paper argues that simulation research needs to draw on insights from the CHI communities in order to meet some the challenges identified by the 9/11 commission
The Hidden Human Factors in Unmanned Aerial Vehicles
In April 2006, an Unmanned Aerial Vehicle crashed near Nogales, Arizona. This incident is of interest because it triggered one of the most sustained studies into the causes of failure involving such a vehicle. The National Transportation Safety Board together with the US Customs and Border Protection agency under the Department of Homeland Security worked to identify lessons learned from this mishap. The crash at Nogales is also of interest because it illustrates an irony of Unmanned Aircraft Systems operations; the increasing reliance on autonomous and unmanned operations is increasing the importance of other aspects of human-system interaction in the cause of major incidents. The following pages illustrate this argument using an accident analysis technique, Events and Causal Factors charting, to identify the many different ways in which human factors contributed to the loss of this Predator B aircraft
Lessons from the evacuation of the World Trade Center, Sept 11th 2001 for the future development of computer simulations
This paper provides an overview of the state of the art in evacuation simulations. These interactive computer based tools have been developed to help the owners and designers of large public buildings to assess the risks that occupants might face during emergency egress. The development of the Glasgow Evacuation Simulator is used to illustrate the existing generation of tools. This system uses Monte Carlo techniques to control individual and group movements during an evacuation. The end-user can interactively open and block emergency exits at any point. It is also possible to alter the priorities that individuals associate with particular exit routes. A final benefit is that the tool can derive evacuation simulations directly from existing architects models; this reduces the cost of simulations and creates a more prominent role for these tools in the iterative development of large-scale public buildings. Empirical studies have been used to validate the GES system as a tool to support evacuation training. The development of these tools has been informed by numerous human factors studies and by recent accident investigations. For example, the 2003 fire in the Station nightclub in Rhode Island illustrated the way in which most building occupants retrace their steps to an entrance even when there are alternate fire exits. The second half of this paper uses this introduction to criticise the existing state of the art in evacuation simulations. These criticisms are based on a detailed study of the recent findings from the 9/11 Commission (2004). Ten different lessons are identified. Some relate to the need to better understand the role of building management and security systems in controlling egress from public buildings. Others relate to the human factors involved in coordinating distributed groups of emergency personnel who may be physically exhausted by the demands of an evacuation. Arguably the most important findings centre on the need to model the ingress and egress of emergency personnel from these structures. The previous focus of nearly all-existing simulation tools has been on the evacuation of building occupants rather than on the safety of first responders1
-pairing Interactions of Fermions in a Single- Shell
In this talk I shall introduce our recent works on general pairing
interactions and pair truncation approximations for fermions in a single-j
shell, including the spin zero dominance, features of eigenvalues of fermion
systems in a single-j shell interacting by a pairing interaction.Comment: 10 pages and 4 figures, international symposiu
Safety arguments for next generation location aware computing
Concerns over the accuracy, availability, integrity and
continuity of Global Navigation Satellite Systems (GNSS)
have limited the integration of GPS and GLONASS for
safety-critical applications. More recent augmentation
systems, such as the European Geostationary Navigation
Overlay Service (EGNOS) and the North American Wide
Area Augmentation System (WAAS) have begun to address
these concerns. Augmentation architectures build on the
existing GPS/GLONASS infrastructures to support locationbased services in Safety of Life (SoL) applications. Much of the technical development has been directed by air traffic management requirements, in anticipation of the more extensive support to be offered by GPS III and Galileo. WAAS has already been approved to provide vertical guidance against ICAO safety performance criteria for aviation applications. During the next twelve months, we will see the full certification of EGNOS for SoL applications.
This paper identifies strong similarities between the safety
assessment techniques used in Europe and North America.
Both have relied on hazard analysis techniques to derive
estimates of the Probability of Hazardously Misleading
Information (PHMI). Later sections identify significant
differences between the approaches adopted in application
development. Integrated fault trees have been developed by
regulatory and commercial organisations to consider both
infrastructure hazards and their impact on non-precision
RNAV/VNAV approaches using WAAS. In contrast,
EUROCONTROL and the European Space Agency have
developed a more modular approach to safety-case
development for EGNOS. It remains to be seen whether the
European or North American strategy offers the greatest
support as satellite based augmentation systems are used
within a growing range of SoL applications from railway
signalling through to Unmanned Airborne Systems. The key
contribution of this paper is to focus attention on the safety
arguments that might support this wider class of location
based services
The natural history of bugs: using formal methods to analyse software related failures in space missions
Space missions force engineers to make complex trade-offs between many different constraints including cost, mass, power, functionality and reliability. These constraints create a continual need to innovate. Many advances rely upon software, for instance to control and monitor the next generation ‘electron cyclotron resonance’ ion-drives for deep space missions.Programmers face numerous challenges. It is extremely difficult to conduct valid ground-based tests for the code used in space missions. Abstract models and simulations of satellites can be misleading. These issues are compounded by the use of ‘band-aid’ software to fix design mistakes and compromises in other aspects of space systems engineering. Programmers must often re-code missions in flight. This introduces considerable risks. It should, therefore, not be a surprise that so many space missions fail to achieve their objectives. The costs of failure are considerable. Small launch vehicles, such as the U.S. Pegasus system, cost around 4 million up to 73 million from the failure of a single uninsured satellite. It is clearly important that we learn as much as possible from those failures that do occur. The following pages examine the roles that formal methods might play in the analysis of software failures in space missions
The Role of Trust and Interaction in GPS Related Accidents: A Human Factors Safety Assessment of the Global Positioning System (GPS)
The Global Positioning System (GPS) uses a network of orbiting and geostationary satellites to calculate the position of a receiver over time. This technology has revolutionised a wide range of safety-critical industries and leisure applications ranging from commercial fisheries through to mountain running. These systems provide diverse benefits; supplementing the users existing navigation skills and reducing the uncertainty that often characterises many route planning tasks. GPS applications can also help to reduce workload by automating tasks that would otherwise require finite cognitive and perceptual resources. However, the operation of these systems has been identified as a contributory factor in a range of recent accidents. Users often come to rely on GPS applications and, therefore, fail to notice when they develop faults or when errors occur in the other systems that use the data from these systems. Further accidents can stem from the ‘over confidence’ that arises when users assume automated warnings will be issued when they stray from an intended route. Unless greater attention is paid to the human factors of GPS applications then there is a danger that we will see an increasing number of these failures as positioning technologies are integrated into increasing numbers of application
Minority game with arbitrary cutoffs
We study a model of a competing population of N adaptive agents, with similar
capabilities, repeatedly deciding whether to attend a bar with an arbitrary
cutoff L. Decisions are based upon past outcomes. The agents are only told
whether the actual attendance is above or below L. For L-> N/2, the game
reproduces the main features of Challet and Zhang's minority game. As L is
lowered, however, the mean attendances in different runs tend to divide into
two groups. The corresponding standard deviations for these two groups are very
different. This grouping effect results from the dynamical feedback governing
the game's time-evolution, and is not reproduced if the agents are fed a random
history.Comment: 4 pages (Revtex) + 6 separate pdf figure
Recommended from our members
Legal Aspects of Land Use Regulation of Lake Shorelands by State and Local Governments for the Protection of Lakes
U.S. Department of the Interior Office of Water Research and TechnologyCenter for Water and the Environmen
- …