17,101 research outputs found
Large-scale energy spectra in surface quasi-geostrophic turbulence
The large-scale energy spectrum in two-dimensional turbulence governed by the
surface quasi-geostrophic (SQG) equation
is studied. The nonlinear transfer of this system conserves the two quadratic
quantities and
(kinetic energy), where denotes
a spatial average. The energy density is bounded and its spectrum
is shallower than in the inverse-transfer range. For
bounded turbulence, in the low-wavenumber region can be bounded by
where is a constant independent of but dependent on the domain
size. Results from numerical simulations confirming the theoretical predictions
are presented.Comment: 11 pages, 4 figures, to appear in JF
Inhibition of DNA ejection from bacteriophage by Mg+2 counterions
The problem of inhibiting viral DNA ejection from bacteriophages by
multivalent counterions, specifically Mg counterions, is studied.
Experimentally, it is known that MgSO salt has a strong and non-monotonic
effect on the amount of DNA ejected. There exists an optimal concentration at
which the minimum amount of DNA is ejected from the virus. At lower or higher
concentrations, more DNA is ejected from the capsid. We propose that this
phenomenon is the result of DNA overcharging by Mg multivalent
counterions. As Mg concentration increases from zero, the net charge of
DNA changes from negative to positive. The optimal inhibition corresponds to
the Mg concentration where DNA is neutral. At lower/higher
concentrations, DNA genome is charged. It prefers to be in solution to lower
its electrostatic self-energy, which consequently leads to an increase in DNA
ejection. By fitting our theory to available experimental data, the strength of
DNADNA short range attraction energies, mediated by Mg, is found to
be 0.004 per nucleotide base. This and other fitted parameters agree
well with known values from other experiments and computer simulations. The
parameters are also in aggreement qualitatively with values for tri- and
tetra-valent counterions.Comment: 17 pages, 4 figures, improved manuscript. Submitted to J. Chem. Phys
(2010
Large-scale bottleneck effect in two-dimensional turbulence
The bottleneck phenomenon in three-dimensional turbulence is generally
associated with the dissipation range of the energy spectrum. In the present
work, it is shown by using a two-point closure theory, that in two-dimensional
turbulence it is possible to observe a bottleneck at the large scales, due to
the effect of friction on the inverse energy cascade. This large-scale
bottleneck is directly related to the process of energy condensation, the
pile-up of energy at wavenumbers corresponding to the domain size. The link
between the use of friction and the creation of space-filling structures is
discussed and it is concluded that the careless use of hypofriction might
reduce the inertial range of the energy spectrum
Pressure moderation and effective pressure in Navier-Stokes flows
We study the Cauchy problem of the Navier–Stokes equations by both semi-analytic and classical energy methods. The former approach provides a physical picture of how viscous effects may or may not be able to suppress singularity development. In the latter approach, we examine the pressure term that drives the dynamics of the velocity norms ||u||Lq , for q ≥ 3. A key idea behind this investigation is due to the fact that the pressure p in this term is determined upto a function of both space and |u|, say Ƥ(x, |u|), which may assume relatively broad forms. This allows us to use Ƥ as a pressure moderator in the evolution equation for ||u||Lq , whereby optimal regularity criteria can be sought by varying Ƥ within its admissible classes. New regularity criteria are derived with and without making use of the moderator. The results obtained in the absence of the moderator feature some improvement over existing criteria in the literature. Several criteria are derived in terms of the moderated (effective) pressure p+Ƥ. A simple moderation scheme and the plausibility of the present approach to the problem of Navier–Stokes regularity are discussed.PostprintPeer reviewe
U-duality as General Coordinate Transformations, and Spacetime Geometry
We show that the full global symmetry groups of all the D-dimensional maximal
supergravities can be described in terms of the closure of the internal general
coordinate transformations of the toroidal compactifications of D=11
supergravity and of type IIB supergravity, with type IIA/IIB T-duality
providing an intertwining between the two pictures. At the quantum level, the
part of the U-duality group that corresponds to the surviving discretised
internal general coordinate transformations in a given picture leaves the
internal torus invariant, while the part that is not described by internal
general coordinate transformations can have the effect of altering the size or
shape of the internal torus. For example, M-theory compactified on a large
torus T^n can be related by duality to a compactification on a small torus, if
and only if n\ge 3. We also discuss related issues in the toroidal
compactification of the self-dual string to D=4. An appendix includes the
complete results for the toroidal reduction of the bosonic sector of type IIB
supergravity to arbitrary dimensions D\ge3.Comment: Latex, 28 page
Removal of antagonistic spindle forces can rescue metaphase spindle length and reduce chromosome segregation defects
Regular Abstracts - Tuesday Poster Presentations: no. 1925Metaphase describes a phase of mitosis where chromosomes are attached and oriented on the bipolar spindle for subsequent segregation at anaphase. In diverse cell types, the metaphase spindle is maintained at a relatively constant length. Metaphase spindle length is proposed to be regulated by a balance of pushing and pulling forces generated by distinct sets of spindle microtubules and their interactions with motors and microtubule-associated proteins (MAPs). Spindle length appears important for chromosome segregation fidelity, as cells with shorter or longer than normal metaphase spindles, generated through deletion or inhibition of individual mitotic motors or MAPs, showed chromosome segregation defects. To test the force balance model of spindle length control and its effect on chromosome segregation, we applied fast microfluidic temperature-control with live-cell imaging to monitor the effect of switching off different combinations of antagonistic forces in the fission yeast metaphase spindle. We show that spindle midzone proteins kinesin-5 cut7p and microtubule bundler ase1p contribute to outward pushing forces, and spindle kinetochore proteins kinesin-8 klp5/6p and dam1p contribute to inward pulling forces. Removing these proteins individually led to aberrant metaphase spindle length and chromosome segregation defects. Removing these proteins in antagonistic combination rescued the defective spindle length and, in some combinations, also partially rescued chromosome segregation defects. Our results stress the importance of proper chromosome-to-microtubule attachment over spindle length regulation for proper chromosome segregation.postprin
- …