239 research outputs found
Bromination of Graphene and Graphite
We present a density functional theory study of low density bromination of
graphene and graphite, finding significantly different behaviour in these two
materials. On graphene we find a new Br2 form where the molecule sits
perpendicular to the graphene sheet with an extremely strong molecular dipole.
The resultant Br+-Br- has an empty pz-orbital located in the graphene
electronic pi-cloud. Bromination opens a small (86meV) band gap and strongly
dopes the graphene. In contrast, in graphite we find Br2 is most stable
parallel to the carbon layers with a slightly weaker associated charge transfer
and no molecular dipole. We identify a minimum stable Br2 concentration in
graphite, finding low density bromination to be endothermic. Graphene may be a
useful substrate for stabilising normally unstable transient molecular states
Behavior of hydrogen ions, atoms, and molecules in a-boron studied using density functional calculations
We examine the behavior of hydrogen ions, atoms, and molecules in a-boron using density functionalcalculations. Hydrogen behaves as a negative-U center, with positive H ions preferring to sit off-center oninterlayer bonds and negative H ions sitting preferably at in-plane sites between three B12 icosahedra. Hydrogen atoms inside B12 icosahedral cages are unstable, drifting off-center and leaving the cage with only a 0.09 eV barrier. While H0 is extremely mobile (diffusion barrier 0.25 eV), H+ and H- have higher diffusion barriers of 0.9 eV. Once mobile, these defects will combine, forming H2 in the interstitial void space, which will remain trapped in the lattice until high temperatures. Based on these results we discuss potential differences for hydrogen behavior in -boron and compare with experimental muon-implantation data
Electron spectroscopy of carbon materials: Experiment and theory
We present a comparative spectroscopic study of carbon as graphite, diamond and C60 using C1s K-edge electron energy-loss spectroscopy (EELS), X-ray emission spectroscopy, and theoretical modelling. The first principles calculations of these spectra are obtained in the local density approximation using a self-consistent Gaussian basis pseudo-potential method. Calculated spectra show excellent agreement with experiment and are able to discriminate not only between various carbon hybridisations but also local variation in environment. Core-hole effects on the calculated spectra are also investigated. For the first time, the EEL spectrum of carbyne is calculated
Atomic Configuration of Nitrogen Doped Single-Walled Carbon Nanotubes
Having access to the chemical environment at the atomic level of a dopant in
a nanostructure is crucial for the understanding of its properties. We have
performed atomically-resolved electron energy-loss spectroscopy to detect
individual nitrogen dopants in single-walled carbon nanotubes and compared with
first principles calculations. We demonstrate that nitrogen doping occurs as
single atoms in different bonding configurations: graphitic-like and
pyrrolic-like substitutional nitrogen neighbouring local lattice distortion
such as Stone-Thrower-Wales defects. The stability under the electron beam of
these nanotubes has been studied in two extreme cases of nitrogen incorporation
content and configuration. These findings provide key information for the
applications of these nanostructures.Comment: 25 pages, 13 figure
First-Principles Study of Substitutional Metal Impurities in Graphene: Structural, Electronic and Magnetic Properties
We present a theoretical study using density functional calculations of the
structural, electronic and magnetic properties of 3d transition metal, noble
metal and Zn atoms interacting with carbon monovacancies in graphene. We pay
special attention to the electronic and magnetic properties of these
substitutional impurities and found that they can be fully understood using a
simple model based on the hybridization between the states of the metal atom,
particularly the d shell, and the defect levels associated with an
unreconstructed D3h carbon vacancy. We identify three different regimes
associated with the occupation of different carbon-metal hybridized electronic
levels:
(i) bonding states are completely filled for Sc and Ti, and these impurities
are non-magnetic;
(ii) the non-bonding d shell is partially occupied for V, Cr and Mn and,
correspondingly, these impurties present large and localized spin moments;
(iii) antibonding states with increasing carbon character are progressively
filled for Co, Ni, the noble metals and Zn. The spin moments of these
impurities oscillate between 0 and 1 Bohr magnetons and are increasingly
delocalized.
The substitutional Zn suffers a Jahn-Teller-like distortion from the C3v
symmetry and, as a consequence, has a zero spin moment. Fe occupies a distinct
position at the border between regimes (ii) and (iii) and shows a more complex
behavior: while is non-magnetic at the level of GGA calculations, its spin
moment can be switched on using GGA+U calculations with moderate values of the
U parameter.Comment: 13 figures, 4 tables. Submitted to Phys. Rev. B on September 26th,
200
Platinum and palladium on carbon nanotubes:Experimental and theoretical studies
<p>Pristine and oxygen plasma functionalised carbon nanotubes (CNTs) were studied after the evaporation of Pt and Pd atoms. High resolution transmission electron microscopy shows the formation of metal nanoparticles at the CNT surface. Oxygen functional groups grafted by the plasma functionalization act as nucleation sites for metal nanoparticles. Analysis of the C1s core level spectra reveals that there is no covalent bonding between the Pt or Pd atoms and the CNT surface. Unlike other transition metals such as titanium and copper, neither Pd nor Pt show strong oxygen interaction or surface oxygen scavenging behaviour. (C) 2013 Elsevier B.V. All rights reserved.</p>
BN domains included into carbon nanotubes: role of interface
We present a density functional theory study on the shape and arrangement of
small BN domains embedded into single-walled carbon nanotubes. We show a strong
tendency for the BN hexagons formation at the simultaneous inclusion of B and N
atoms within the walls of carbon nanotubes. The work emphasizes the importance
of a correct description of the BN-C frontier. We suggest that BN-C interface
will be formed preferentially with the participation of N-C bonds. Thus, we
propose a new way of stabilizing the small BN inclusions through the formation
of nitrogen terminated borders. The comparison between the obtained results and
the available experimental data on formation of BN plackets within the single
walled carbon nanotubes is presented. The mirror situation of inclusion of
carbon plackets within single walled BN nanotubes is considered within the
proposed formalism. Finally, we show that the inclusion of small BN plackets
inside the CNTs strongly affects the electronic character of the initial
systems, opening a band gap. The nitrogen excess in the BN plackets introduces
donor states in the band gap and it might thus result in a promising way for
n-doping single walled carbon nanotubes
Bundling up carbon nanotubes through Wigner defects
We show, using ab initio total energy density functional theory, that the
so-called Wigner defects, an interstitial carbon atom right besides a vacancy,
which are present in irradiated graphite can also exist in bundles of carbon
nanotubes. Due to the geometrical structure of a nanotube, however, this defect
has a rather low formation energy, lower than the vacancy itself, suggesting
that it may be one of the most important defects that are created after
electron or ion irradiation. Moreover, they form a strong link between the
nanotubes in bundles, increasing their shear modulus by a sizeable amount,
clearly indicating its importance for the mechanical properties of nanotube
bundles.Comment: 5 pages and 4 figure
Comparison between classical potentials and ab initio for silicon under large shear
The homogeneous shear of the {111} planes along the direction of bulk
silicon has been investigated using ab initio techniques, to better understand
the strain properties of both shuffle and glide set planes. Similar
calculations have been done with three empirical potentials, Stillinger-Weber,
Tersoff and EDIP, in order to find the one giving the best results under large
shear strains. The generalized stacking fault energies have also been
calculated with these potentials to complement this study. It turns out that
the Stillinger-Weber potential better reproduces the ab initio results, for the
smoothness and the amplitude of the energy variation as well as the
localization of shear in the shuffle set
- …