651 research outputs found

    Detection of the radial velocity curve of the B5-A0 supergiant companion star of Cir X-1?

    Get PDF
    In this Paper we report on phase resolved I-band optical spectroscopic and photometric observations of CirX-1 obtained with the Very Large Telescope. The spectra are dominated by Paschen absorption lines at nearly all orbital phases except near phase zero (coinciding with the X-ray dip) when the absorption lines are filled-in by broad Paschen emission lines. The radial velocity curve of the absorption lines corresponds to an eccentric orbit (e=0.45) whose period and time of periastron passage are consistent with the period and phase predicted by the most recent X-ray dip ephemeris. We found that the I-band magnitude decreases from 17.6 to ~16.8 near phase 0.9-1.0, this brightening coincides in phase with the X-ray dip. Even though it is likely that the absorption line spectrum is associated with the companion star of CirX-1, we cannot exclude the possibility that the spectrum originates in the accretion disc. However, if the spectrum belongs to the companion star, it must be a supergiant of spectral type B5-A0. If we assume that the compact object does not move through the companion star at periastron, the companion star mass is constrained to ~<10 Msun for a 1.4 Msun neutron star, whereas the inclination has to be ~> 13.7 degrees. Alternatively, the measured absorption lines and their radial velocity curve can be associated with the accretion disc surrounding a 1.4 Msun neutron star and its motion around the centre of mass. An absorption line spectrum from an accretion disc is typically found when our line-of-sight passes through the accretion disc rim implying a high inclination. However, from radio observations it was found that the angle between the line-of-sight and the jet axis is smaller than 5 degrees implying that the jet ploughs through the accretion disc in this scenario.Comment: 8 pages, 4 figures, 3 tables, accepted by MNRA

    Enabling pulsar and fast transient searches using coherent dedispersion

    Full text link
    We present an implementation of the coherent dedispersion algorithm capable of dedispersing high-time-resolution radio observations to many different dispersion measures (DMs). This approach allows the removal of the dispersive effects of the interstellar medium and enables searches for pulsed emission from pulsars and other millisecond-duration transients at low observing frequencies and/or high DMs where time broadening of the signal due to dispersive smearing would otherwise severely reduce the sensitivity. The implementation, called 'cdmt', for Coherent Dispersion Measure Trials, exploits the parallel processing capability of general-purpose graphics processing units to accelerate the computations. We describe the coherent dedispersion algorithm and detail how cdmt implements the algorithm to efficiently compute many coherent DM trials. We present the concept of a semi-coherent dedispersion search, where coherently dedispersed trials at coarsely separated DMs are subsequently incoherently dedispersed at finer steps in DM. The software is used in an ongoing LOFAR pilot survey to test the feasibility of performing semi-coherent dedispersion searches for millisecond pulsars at 135MHz. This pilot survey has led to the discovery of a radio millisecond pulsar -- the first at these low frequencies. This is the first time that such a broad and comprehensive search in DM-space has been done using coherent dedispersion, and we argue that future low-frequency pulsar searches using this approach are both scientifically compelling and feasible. Finally, we compare the performance of cdmt with other available alternatives.Comment: 8 pages, 7 figures, submitted to Astronomy and Computin

    Filamentation Instability of Interacting Current Sheets in Striped Relativistic Winds: The Origin of Low Sigma?

    Full text link
    I outline a mechanism, akin to Weibel instabilities of interpenetrating beams, in which the neighboring current sheets in a striped wind from an oblique rotator interact through a two stream-like mechanism (a Weibel instability in flatland), to create an anomalous resistivity that heats the sheets and causes the magnetic field to diffusively annihilate in the wind upstream of the termination shock. The heating has consequences for observable unpulsed emission from pulsars.Comment: 7 pages, 9 figures. To be published in the proceedings of ``40 Years of Pulsars'

    Theory of Pulsar Wind Nebulae

    Full text link
    Our understanding of Pulsar Wind Nebulae (PWNe), has greatly improved in the last years thanks to unprecedented high resolution images taken from the HUBBLE, CHANDRA and XMM satellites. The discovery of complex but similar inner features, with the presence of unexpected axisymmetric rings and jets, has prompted a new investigation into the dynamics of the interaction of the pulsar winds with the surrounding SNR, which, thanks to the improvement in the computational resources, has let to a better understanding of the properties of these objects. On the other hand the discovery of non-thermal emission from bow shock PWNe, and of systems with a complex interaction between pulsar and SNR, has led to the development of more reliable evolutionary models. I will review the standard theory of PWNe, their evolution, and the current status in the modeling of their emission properties, in particular I will show that our evolutionary models are able to describe the observations, and that the X-ray emission can now be reproduced with sufficient accuracy, to the point that we can use these nebulae to investigate fundamental issues as the properties of relativistic outflows and particle acceleration.Comment: 9 page, 5 figures, Proceeding of the conference "40 Years of Pulsars", 12-17 August 2007, Montreal, Canada. (figures are not properly displayed in .ps or .pdf version please download archive for them

    Forced oscillations in relativistic accretion disks and QPOs

    Get PDF
    In this work we explore the idea that the high frequency QPOs observed in LMXBs may be explained as a resonant coupling between the neutron star spin and epicyclic modes of accretion disk oscillations. We propose a new model for these QPOs based on forced oscillations induced in the accretion disk due to a stellar asymmetric rotating gravitational or magnetic field. It is shown that particles evolving in a rotating non-axisymmetric field are subject to three kinds of resonances: a corotation resonance, a Lindblad resonance due to a driving force, and a parametric resonance due to the time varying epicyclic frequencies. These results are extends by means of 2D numerical simulations of a simplified version of the accretion disk. The simulations are performed for the Newtonian gravitational potential, as well as for a pseudo-general relativistic potential, which enables us to explore the behavior of the resonances around both rotating neutron stars and black holes. Density perturbations are only significant in the region located close to the inner edge of the disk near the ISCO where the gravitational or magnetic perturbation is maximal. It is argued that the nearly periodic motion induced in the disk will produce high quality factor QPOs. Finally, applying this model to a typical neutron star, we found that the strongest response occurs when the frequency difference of the two modes equals either the spin frequency (for "slow rotators") or half of it (for "fast rotators"). The two main excited modes may both be connected to vertical oscillations of the disk. We emphasize that strong gravity is not needed to excite the modes.Comment: Proceedings of the 363. WE-Heraeus Seminar on: Neutron Stars and Pulsars (Posters and contributed talks) Physikzentrum Bad Honnef, Germany, May.14-19, 2006, eds. W.Becker, H.H.Huang, MPE Report 291, pp.189-19

    Optical/Infrared Observations of the Anomalous X-ray Pulsar 1E 1048.1-5937 During Its 2007 X-Ray Flare

    Full text link
    We report on optical and infrared observations of the anomalous X-ray pulsar (AXP) 1E 1048.1-5937, made during its ongoing X-ray flare which started in 2007 March. We detected the source in the optical I and near-infrared Ks bands in two ground-based observations and obtained deep flux upper limits from four observations, including one with the Spitzer Space Telescope at 4.5 and 8.0 microns. The detections indicate that the source was approximately 1.3--1.6 magnitudes brighter than in 2003--2006, when it was at the tail of a previous similar X-ray flare. Similar related flux variations have been seen in two other AXPs during their X-ray outbursts, suggesting common behavior for large X-ray flux variation events in AXPs. The Spitzer flux 1E 1048.1-5937 limits are sufficiently deep that we can exclude mid-infrared emission similar to that from the AXP 4U 0142+61, which has been interpreted as arising from a dust disk around the AXP. The optical/near-infrared emission from probably has a magnetospheric origin. The similarity in the flux spectra of 4U 0142+61 and 1E 1048.1-5937 challenges the dust disk model proposed for the latter.Comment: 5 pages, 1 figure, accepted by Ap

    The Parkes Pulsar Timing Array

    Full text link
    Detection and study of gravitational waves from astrophysical sources is a major goal of current astrophysics. Ground-based laser-interferometer systems such as LIGO and VIRGO are sensitive to gravitational waves with frequencies of order 100 Hz, whereas space-based systems such as LISA are sensitive in the millihertz regime. Precise timing observations of a sample of millisecond pulsars widely distributed on the sky have the potential to detect gravitational waves at nanohertz frequencies. Potential sources of such waves include binary super-massive black holes in the cores of galaxies, relic radiation from the inflationary era and oscillations of cosmic strings. The Parkes Pulsar Timing Array (PPTA) is an implementation of such a system in which 20 millisecond pulsars have been observed using the Parkes radio telescope at three frequencies at intervals of two -- three weeks for more than two years. Analysis of these data has been used to limit the gravitational wave background in our Galaxy and to constrain some models for its generation. The data have also been used to investigate fluctuations in the interstellar and Solar-wind electron density and have the potential to investigate the stability of terrestrial time standards and the accuracy of solar-system ephemerides.Comment: 9 pages, 6 figures, Proceedings of "40 Years of Pulsars: Millisecond Pulsars, Magnetars and More", Montreal, August 2007. Corrected SKA detection limi

    Twenty Years of Searching for (and Finding) Globular Cluster Pulsars

    Full text link
    Globular clusters produce orders of magnitude more millisecond pulsars per unit mass than the Galactic disk. Since the first cluster pulsar was uncovered twenty years ago, at least 138 have been identified - most of which are binary millisecond pulsars. Because of their origins involving stellar encounters, many of these systems are exotic objects that would never be observed in the Galactic disk. Examples include pulsar-main sequence binaries, extremely rapid rotators (including the current record holder), and millisecond pulsars in highly eccentric orbits. These systems are allowing new probes of the interstellar medium, the equation of state of material at supra-nuclear density, the mass distribution of neutron stars, and the dynamics of globular clusters.Comment: 9 pages, 6 figures. Submitted review for the "40 Years of Pulsars" conference in Montreal, Aug 2007. To be published by the AI

    Nearby, Thermally Emitting Neutron Stars

    Full text link
    We describe a sample of thermally emitting neutron stars discovered in the ROSAT All-Sky Survey. We discuss the basic observational properties of these objects and conclude that they are nearby, middle-aged pulsars with moderate magnetic fields that we see through their cooling radiation. While these objects are potentially very useful as probes of matter at very high densities and magnetic fields, our lack of understanding of their surface emission limits their current utility. We discuss this and other outstanding problems: the spectral evolution of one sources and the relation of this population to the overall pulsar population.Comment: 9 pages, one table, 3 figures. To appear in the proceedings of "40 Years of Pulsars: Millisecond Pulsars, Magnetars, and More", August 12-17, 2007, McGill University, Montreal, Canad

    Constraining the neutron star equation of state using quiescent low-mass X-ray binaries

    Full text link
    Chandra or XMM-Newton observations of quiescent low-mass X-ray binaries can provide important constraints on the equation of state of neutron stars. The mass and radius of the neutron star can potentially be determined from fitting a neutron star atmosphere model to the observed X-ray spectrum. For a radius measurement it is of critical importance that the distance to the source is well constrained since the fractional uncertainty in the radius is at least as large as the fractional uncertainty in the distance. Uncertainties in modelling the neutron star atmosphere remain. At this stage it is not yet clear if the soft thermal component in the spectra of many quiescent X-ray binaries is variable on timescales too short to be accommodated by the cooling neutron star scenario. This can be tested with a long XMM-Newton observation of the neutron star X-ray transient CenX-4 in quiescence. With such an observation one can use the Reflection Grating Spectrometer spectrum to constrain the interstellar extinction to the source. This removes this parameter from the X-ray spectral fitting of the EPIC pn and MOS spectra and allows one to investigate whether the variability observed in the quiescent X-ray spectrum of this source is due to variations in the soft thermal spectral component or variations in the power law spectral component coupled with variations in N_H. This will test whether the soft thermal component can indeed be due to the hot thermal glow of the neutron star. Irrespective of the outcome of such a study, the observed cooling in quiescence in sources for which the crust is significantly out of thermal equilibrium with the core due to a prolonged outburst, such as KS 1731-260, seem excellent candidates for mass and radius determinations through modelling the observed X-rays with a neutron star atmosphere model.Comment: 7 pages, 3 figures, proceedings "40 years of pulsars" conferenc
    corecore