1,854 research outputs found

    Physical properties of transparent perovskite oxides (Ba,La)SnO3 with high electrical mobility at room temperature

    Full text link
    Transparent electronic materials are increasingly in demand for a variety of optoelectronic applications. BaSnO3 is a semiconducting oxide with a large band gap of more than 3.1 eV. Recently, we discovered that La doped BaSnO3 exhibits unusually high electrical mobility of 320 cm^2(Vs)^-1 at room temperature and superior thermal stability at high temperatures [H. J. Kim et al. Appl. Phys. Express. 5, 061102 (2012)]. Following that work, we report various physical properties of (Ba,La)SnO3 single crystals and films including temperature-dependent transport and phonon properties, optical properties and first-principles calculations. We find that almost doping-independent mobility of 200-300 cm^2(Vs)^-1 is realized in the single crystals in a broad doping range from 1.0x10^19 to 4.0x10^20 cm^-3. Moreover, the conductivity of ~10^4 ohm^-1cm^-1 reached at the latter carrier density is comparable to the highest value. We attribute the high mobility to several physical properties of (Ba,La)SnO3: a small effective mass coming from the ideal Sn-O-Sn bonding, small disorder effects due to the doping away from the SnO2 conduction channel, and reduced carrier scattering due to the high dielectric constant. The observation of a reduced mobility of ~70 cm^2(Vs)^-1 in the film is mainly attributed to additional carrier-scatterings which are presumably created by the lattice mismatch between the substrate SrTiO3 and (Ba,La)SnO3. The main optical gap of (Ba,La)SnO3 single crystals remained at about 3.33 eV and the in-gap states only slightly increased, thus maintaining optical transparency in the visible region. Based on these, we suggest that the doped BaSnO3 system holds great potential for realizing all perovskite-based, transparent high-frequency high-power functional devices as well as highly mobile two-dimensional electron gas via interface control of heterostructured films.Comment: 31 pages, 7 figure

    FESD: a Functional Element SNPs Database in human

    Get PDF
    We have created the Functional Element SNPs Database (FESD) that categorizes functional elements in human genic regions and provides a set of single nucleotide polymorphisms (SNPs) located within each area. In the FESD, the human genic regions were divided into 10 different functional elements, such as promoter regions, CpG islands, 5′-untranslated regions (5′-UTRs), translation start sites, splice sites, coding exons, introns, translation stop sites, polyadenylation signals and 3′-UTRs, and subsequently, all the known SNPs were assigned to each functional element at their respective position. With the FESD web interface, users can select a set of SNPs in the specific functional elements and get their flanking sequences for genotyping experiments, which will help in finding mutations that contribute to the common and polygenic diseases. A web interface for the FESD is freely available at http://combio.kribb.re.kr/ksnp/resd/

    Influence of Polypyrrole on Phosphorus- and TiO2-Based Anode Nanomaterials for Li-Ion Batteries

    Get PDF
    Phosphorus (P) and TiO2 have been extensively studied as anode materials for lithium-ion batteries (LIBs) due to their high specific capacities. However, P is limited by low electrical conductivity and significant volume changes during charge and discharge cycles, while TiO2 is hindered by low electrical conductivity and slow Li-ion diffusion. To address these issues, we synthesized organic–inorganic hybrid anode materials of P–polypyrrole (PPy) and TiO2–PPy, through in situ polymerization of pyrrole monomer in the presence of the nanoscale inorganic materials. These hybrid anode materials showed higher cycling stability and capacity compared to pure P and TiO2. The enhancements are attributed to the electrical conductivity and flexibility of PPy polymers, which improve the conductivity of the anode materials and effectively buffer volume changes to sustain structural integrity during the charge and discharge processes. Additionally, PPy can undergo polymerization to form multi-component composites for anode materials. In this study, we successfully synthesized a ternary composite anode material, P–TiO2–PPy, achieving a capacity of up to 1763 mAh/g over 1000 cycles

    Performance-Based Multiobjective Optimal Seismic Retrofit Method for a Steel Moment-Resisting Frame Considering the Life-Cycle Cost

    Get PDF
    This study proposes a performance-based multiobjective optimization seismic retrofit method for steel moment-resisting frames. The brittle joints of pre-Northridge steel moment-resisting frames are retrofitted to achieve ductility; the method involves determining the position and number of connections to be retrofitted. The optimal solution is determined by applying the nondominated sorting genetic algorithm-II (NSGA-II), which acts as a multiobjective seismic retrofit optimization technique. As objective functions, the initial cost for the connection retrofit and lifetime seismic damage cost were selected, and a seismic performance level below the 5% interstory drift ratio was employed as a constraint condition. The proposed method was applied to the SAC benchmark three- and nine-story buildings, and several Pareto solutions were obtained. The optimized retrofit solutions indicated that the lifetime seismic damage cost decreased as the initial retrofit cost increased. Although every Pareto solution existed within a seismic performance boundary set by a constraint function, the seismic performance tended to increase with the initial retrofit cost. Analysis and economic assessment of the relations among the initial retrofit cost, lifetime seismic damage cost, total cost, and seismic performance of the derived Pareto solution allow building owners to make seismic retrofit decisions more rationally

    Teatro e ensino da matemática: atividade desenvolvida num curso de formação docente

    Get PDF
    Anais do II Seminário Seminário Estadual PIBID do Paraná: tecendo saberes / organizado por Dulcyene Maria Ribeiro e Catarina Costa Fernandes — Foz do Iguaçu: Unioeste; Unila, 2014Este trabalho relata uma aula desenvolvida pelas alunas do Curso de Formação de Docentes do Instituto Estadual de Educação de Londrina com a colaboração dos Bolsistas do Programa Institucional de Bolsas de Iniciação à Docência – PIBID – Subprojeto de Matemática, para alunos de primeiro ano do Ensino Fundamental utilizando o teatro como forma de apresentar conteúdos matemáticos como números, sequência de números, operações básicas como adição, subtração e conteúdos de língua portuguesa como leitura e escrita de número

    Recommended immunization schedule for children and adolescents: the Korean Pediatric Society, 2013

    Get PDF
    This article contains the recommended immunization schedule by the Committee on Infectious Diseases of the Korean Pediatric Society, updated in March 2013, when Haemophilus influenzae type b vaccine is now included in the National Immunization Program in Korea. It also includes catch-up immunization schedule for children and adolescents who are behind the recommended schedule. These schedules are a minor revision of the corresponding parts of Immunization Guideline, 7th edition, of the Korean Pediatric Society, released in 2012. Pediatricians should be aware of these schedules to provide adequate immunization to Korean children and adolescents

    Improvement of Strength and Oxidation Resistance at High Temperature in AISI 4140 Steel by Micro-Alloying Chromium and Tungsten for Automotive Engine Applications

    Get PDF
    Increasing the operating temperature and pressure of an automotive engine and reducing its weight can improve fuel efficiency and lower carbon dioxide emissions. These can be achieved by changing the engine piston material from conventional aluminum alloy to high-strength heat- resistant steel. American Iron and Steel Institute 4140 modified steels (AISI 4140 Mod.s), which have improved strength, oxidation resistance, and wear resistance at high temperature were developed by adjusting the AISI 4140 alloy compositions and optimizing the heat treatment process for automotive engine applications. In this study, the effects of modifying alloy compositions on the microstructure, mechanical properties (both at room and high temperatures), and oxidation of AISI 4140 Mod.s were investigated. Effective grain refinement occurred due to the influence of high-temperature stable carbide forming elements such as Mo, and V. The bainite structure changed to martensite structure under the influence Cr and Ni. As the Cr and W contents increased, the oxidation resistance was improved, and the oxide layer thickness decreased after 10 hours exposure at 500°C. The AISI 4140 Mod. exhibited a 35% improvement in room temperature strength, 70% improvement in high-temperature strength, and 40% improvement in high-temperature oxidation resistance compared to conventional AISI 4140
    • …
    corecore