32,970 research outputs found
Miniature vibration isolator Patent
Miniature vibration isolator utilizing elastic tubing materia
Hoop/column antenna deployment mechanism overview
The hoop/column antenna program is directed toward the development of a cost effective, large area, self deploying reflector antenna system. Large surface area antenna systems are required in future space missions involving improved land communications, Earth resources observation, and the study of intergalactic energy sources. The hoop/column antenna is a concept where a large antenna system can be packaged within the Space Transportation System (Shuttle) payload bay, launched into Earth orbit where it is released either for deployment as an Earth observation or communications antenna, or boosted into deep space as an intergalactic energy probe. Various mechanisms and support structures are described that are required to deploy the hoop, which is used to support the antenna reflective surface, and the column that is used to position the antenna feeds and the reflector. It also describes a proof-of-concept model (15 meters in diameter) that is currently being ground tested to determine the adequacy of the deployment mechanisms
Unsung heroes: Constituency election agents in British general elections
Despite their central role in the electoral process, constituency agents have been largely overlooked by political scientists and this article seeks to rectify the omission. It sketches the origins and development of the role of agent from the late 19th century and suggests that a serious rethink of the role took place in the 1990s. Survey-based evidence about the social characteristics of agents is presented confirming that they are largely middle-aged, middle-class, well-educated men. They are also becoming more experienced, offer realistic assessments of the impact of constituency campaigning and, arguably, many take a long-term view of how their party's support can be maximised
Effects of 3-d and 4-d-transition metal substitutional impurities on the electronic properties of CrO2
We present first-principles based density functional theory calculations of
the electronic and magnetic structure of CrO2 with 3d (Ti through Cu) and 4d
(Zr through Ag) substitutional impurities. We find that the half-metallicity of
CrO2 remains intact for all of the calculated substitutions. We also observe
two periodic trends as a function of the number of valence electrons: if the
substituted atom has six or fewer valence electrons (Ti-Cr or Zr-Mo), the
number of down spin electrons associated with the impurity ion is zero,
resulting in ferromagnetic (FM) alignment of the impurity magnetic moment with
the magnetization of the CrO2 host. For substituent atoms with eight to ten
(Fe-Ni or Ru-Pd with the exception of Ni), the number of down spin electrons
contributed by the impurity ion remains fixed at three as the number
contributed to the majority increases from one to three resulting in
antiferromagnetic (AFM) alignment between impurity moment and host
magnetization. The origin of this variation is the grouping of the impurity
states into 3 states with approximate "t2g" symmetry and 2 states with
approximate "eg" symmetry. Ni is an exception to the rule because a
Jahn-Teller-like distortion causes a splitting of the Ni eg states. For Mn and
Tc, which have 8 valence electrons, the zero down spin and 3 down spin
configurations are very close in energy. For Cu and Ag atoms, which have 11
valence electrons, the energy is minimized when the substituent ion contributes
5 Abstract down-spin electrons. We find that the interatomic exchange
interactions are reduced for all substitutions except for the case of Fe for
which a modest enhancement is calculated for interactions along certain
crystallographic directions.Comment: 26 pages, 10 figures, 2 table
A user's guide for V174, a program using a finite difference method to analyze transonic flow over oscillating wings
The design and usage of a pilot program using a finite difference method for calculating the pressure distributions over harmonically oscillating wings in transonic flow are discussed. The procedure used is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The steady velocity potential which must be obtained from some other program, is required for input. The unsteady differential equation is linear, complex in form with spatially varying coefficients. Because sinusoidal motion is assumed, time is not a variable. The numerical solution is obtained through a finite difference formulation and a line relaxation solution method
Recommended from our members
Developmental changes in the germinability, desiccation tolerance, hardseededness, and longevity of individual seeds of Trifolium ambiguum
Background and Aims: Using two parental clones of outcrossing Trifolium ambiguum as a potential model system, we examined how during seed development the maternal parent, number of seeds per pod, seed position within the pod, and pod position within the inflorescence influenced individual seed fresh weight, dry weight, water content, germinability, desiccation tolerance, hardseededness, and subsequent longevity of individual seeds.
Methods: Near simultaneous, manual reciprocal crosses were carried out between clonal lines for two experiments. Infructescences were harvested at intervals during seed development. Each individual seed was weighed and then used to determine dry weight or one of the physiological behaviour traits.
Key Results: Whilst population mass maturity was reached at 33–36 days after pollination (DAP), seed-to-seed variation in maximum seed dry weight, when it was achieved, and when maturation drying commenced, was considerable. Individual seeds acquired germinability between 14 and 44 DAP, desiccation tolerance between 30 and 40 DAP, and the capability to become hardseeded between 30 and 47 DAP. The time for viability to fall to 50 % (p50) at 60 % relative humidity and 45 °C increased between 36 and 56 DAP, when the seed coats of most individuals had become dark orange, but declined thereafter. Individual seed f. wt at harvest did not correlate with air-dry storage survival period. Analysing survival data for cohorts of seeds reduced the standard deviation of the normal distribution of seed deaths in time, but no sub-population showed complete uniformity of survival period.
Conclusions: Variation in individual seed behaviours within a developing population is inherent and inevitable. In this outbreeder, there is significant variation in seed longevity which appears dependent on embryo genotype with little effect of maternal genotype or architectural factors
Mn L edge resonant x-ray scattering in manganites: Influence of the magnetic state
We present an analysis of the dependence of the resonant orbital order and
magnetic scattering spectra on the spin configuration. We consider an arbitrary
spin direction with respect to the local crystal field axis, thus lowering
significantly the local symmetry. To evaluate the atomic scattering in this
case, we generalized the Hannon-Trammel formula and implemented it inside the
framework of atomic multiplet calculations in a crystal field. For an
illustration, we calculate the magnetic and orbital scattering in the CE phase
of \lsmo in the cases when the spins are aligned with the crystal lattice
vector (or equivalently ) and when they are rotated in the
-plane by 45 with respect to this axis. Magnetic spectra differ
for the two cases. For the orbital scattering, we show that for the former
configuration there is a non negligible ()
scattering component, which vanishes in the 45 case, while the () components are similar in the two cases. From the
consideration of two 90 spin canted structures, we conclude there is a
significant dependence of the orbital scattering spectra on the spin
arrangement. Recent experiments detected a sudden decrease of the orbital
scattering intensity upon increasing the temperature above the N\' eel
temperature in \lsmo. We discuss this behavior considering the effect of
different types of misorientations of the spins on the orbital scattering
spectrum.Comment: 8 figures. In the revised version, we added a note, a reference, and
a few minor changes in Figure 1 and the text. Accepted in Physical Review
- …