1,395 research outputs found

    A Definition of STS Accommodations for Attached Payloads

    Get PDF
    An input to a study conducted to define a set of carrier avionics for supporting large structures experiments attached to the Space Shuttle Orbiter is reported. The "baseline" Orbier interface used in developing the avionics concept for the Space Technology Experiments Platform, STEP, which Langley Research Center has proposed for supporting experiments of this sort is defined. Primarily, flight operations capabilities and considerations and the avionics systems capabilities that are available to a payload as a "mixed cargo" user of the Space Transportation System are addressed. Ground operations for payload integration at Kennedy Space Center, and ground operations for payload support during the mission are also discussed

    Space shuttle engineering and operations support. Avionics system engineering

    Get PDF
    The shuttle avionics integration laboratory (SAIL) requirements for supporting the Spacelab/orbiter avionics verification process are defined. The principal topics are a Spacelab avionics hardware assessment, test operations center/electronic systems test laboratory (TOC/ESL) data processing requirements definition, SAIL (Building 16) payload accommodations study, and projected funding and test scheduling. Because of the complex nature of the Spacelab/orbiter computer systems, the PCM data link, and the high rate digital data system hardware/software relationships, early avionics interface verification is required. The SAIL is a prime candidate test location to accomplish this early avionics verification

    Hardy's paradox and violation of a state-independent Bell inequality in time

    Get PDF
    Tests such as Bell's inequality and Hardy's paradox show that joint probabilities and correlations between distant particles in quantum mechanics are inconsistent with local realistic theories. Here we experimentally demonstrate these concepts in the time domain, using a photonic entangling gate to perform nondestructive measurements on a single photon at different times. We show that Hardy's paradox is much stronger in time and demonstrate the violation of a temporal Bell inequality independent of the quantum state, including for fully mixed states.Comment: Published Version, 4 pages, 3 figures. New, more boring titl

    Discrete single-photon quantum walks with tunable decoherence

    Get PDF
    Quantum walks have a host of applications, ranging from quantum computing to the simulation of biological systems. We present an intrinsically stable, deterministic implementation of discrete quantum walks with single photons in space. The number of optical elements required scales linearly with the number of steps. We measure walks with up to 6 steps and explore the quantum-to-classical transition by introducing tunable decoherence. Finally, we also investigate the effect of absorbing boundaries and show that decoherence significantly affects the probability of absorption.Comment: Published version, 5 pages, 4 figure

    Efficient measurement of quantum dynamics via compressive sensing

    Get PDF
    The resources required to characterise the dynamics of engineered quantum systems-such as quantum computers and quantum sensors-grow exponentially with system size. Here we adapt techniques from compressive sensing to exponentially reduce the experimental configurations required for quantum process tomography. Our method is applicable to dynamical processes that are known to be nearly-sparse in a certain basis and it can be implemented using only single-body preparations and measurements. We perform efficient, high-fidelity estimation of process matrices on an experiment attempting to implement a photonic two-qubit logic-gate. The data base is obtained under various decoherence strengths. We find that our technique is both accurate and noise robust, thus removing a key roadblock to the development and scaling of quantum technologies.Comment: New title and authors. A new experimental section. Significant rewrite of the theor

    Two-photon quantum walks in an elliptical direct-write waveguide array

    Full text link
    Integrated optics provides an ideal test bed for the emulation of quantum systems via continuous-time quantum walks. Here we study the evolution of two-photon states in an elliptic array of waveguides. We characterise the photonic chip via coherent-light tomography and use the results to predict distinct differences between temporally indistinguishable and distinguishable two-photon inputs which we then compare with experimental observations. Our work highlights the feasibility for emulation of coherent quantum phenomena in three-dimensional waveguide structures.Comment: 8 pages, 7 figure

    Concepts of mental disorders in the United Kingdom : Similarities and differences between the lay public and psychiatrists

    Get PDF
    BACKGROUND: The lay public often conceptualise mental disorders in a different way to mental health professionals, and this can negatively impact on outcomes when in treatment. AIMS: This study explored which disorders the lay public are familiar with, which theoretical models they understand, which they endorse and how they compared to a sample of psychiatrists. METHODS: The Maudsley Attitude Questionnaire (MAQ), typically used to assess mental health professional's concepts of mental disorders, was adapted for use by a lay community sample (N = 160). The results were compared with a sample of psychiatrists (N = 76). RESULTS: The MAQ appeared to be accessible to the lay public, providing some interesting preliminary findings: in order, the lay sample reported having the best understanding of depression followed by generalised anxiety, schizophrenia and finally antisocial personality disorder. They best understood spiritualist, nihilist and social realist theoretical models of these disorders, but were most likely to endorse biological, behavioural and cognitive models. The lay public were significantly more likely to endorse some models for certain disorders suggesting a nuanced understanding of the cause and likely cure, of various disorders. Ratings often differed significantly from the sample of psychiatrists who were relatively steadfast in their endorsement of the biological model. CONCLUSION: The adapted MAQ appeared accessible to the lay sample. Results suggest that the lay public are generally aligned with evidence-driven concepts of common disorders, but may not always understand or agree with how mental health professionals conceptualise them. The possible causes of these differences, future avenues for research and the implications for more collaborative, patient-clinician conceptualisations are discussed.Peer reviewedFinal Accepted Versio

    Mood instability : significance, definition and measurement

    Get PDF
    Mood instability is common, and an important feature of several psychiatric disorders. We discuss the definition and measurement of mood instability, and review its prevalence, characteristics, neurobiological correlates and clinical implications. We suggest that mood instability has underappreciated transdiagnostic potential as an investigational and therapeutic target

    Neural Circuitry of Novelty Salience Processing in Psychosis Risk: Association With Clinical Outcome

    Get PDF
    Psychosis has been proposed to develop from dysfunction in a hippocampal-striatal-midbrain circuit, leading to aberrant salience processing. Here, we used functional magnetic resonance imaging (fMRI) during novelty salience processing to investigate this model in people at clinical high risk (CHR) for psychosis according to their subsequent clinical outcomes. Seventy-six CHR participants as defined using the Comprehensive Assessment of At-Risk Mental States (CAARMS) and 31 healthy controls (HC) were studied while performing a novelty salience fMRI task that engaged an a priori hippocampal-striatal-midbrain circuit of interest. The CHR sample was then followed clinically for a mean of 59.7 months (~5 y), when clinical outcomes were assessed in terms of transition (CHR-T) or non-transition (CHR-NT) to psychosis (CAARMS criteria): during this period, 13 individuals (17%) developed a psychotic disorder (CHR-T) and 63 did not. Functional activation and effective connectivity within a hippocampal-striatal-midbrain circuit were compared between groups. In CHR individuals compared to HC, hippocampal response to novel stimuli was significantly attenuated (P = .041 family-wise error corrected). Dynamic Causal Modelling revealed that stimulus novelty modulated effective connectivity from the hippocampus to the striatum, and from the midbrain to the hippocampus, significantly more in CHR participants than in HC. Conversely, stimulus novelty modulated connectivity from the midbrain to the striatum significantly less in CHR participants than in HC, and less in CHR participants who subsequently developed psychosis than in CHR individuals who did not become psychotic. Our findings are consistent with preclinical evidence implicating hippocampal-striatal-midbrain circuit dysfunction in altered salience processing and the onset of psychosis

    Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing

    Full text link
    We present a simple technique to reduce the emission rate of higher-order photon events from pulsed spontaneous parametric down-conversion. The technique uses extra-cavity control over a mode locked ultrafast laser to simultaneously increase repetition rate and reduce the energy of each pulse from the pump beam. We apply our scheme to a photonic quantum gate, showing improvements in the non-classical interference visibility for 2-photon and 4-photon experiments, and in the quantum-gate fidelity and entangled state production in the 2-photon case.Comment: 8 pages, 6 figure
    corecore