125 research outputs found
Goodness-of-fit tests based on series estimators in nonparametric instrumental regression
This paper proposes several tests of restricted specification in nonparametric instrumental regression. Based on series estimators, test statistics are established that allow for tests of the general model against a parametric or nonparametric specification as well as a test of exogeneity of the vector of regressors.
The tests are asymptotically normally distributed under correct specification and consistent against any alternative model. Under a sequence of local alternative hypotheses, the asymptotic distribution of the tests is derived. Moreover, uniform consistency is established over a class of alternatives whose distance to
the null hypothesis shrinks appropriately as the sample size increases
Testing Missing At Random Using Instrumental Variables
This paper proposes a test for missing at random (MAR). The MAR assumption is shown to be testable given instrumental variables which are independent of response given potential outcomes. A nonparametric testing procedure based on integrated squared distance is proposed. The statistic's asymptotic distribution under the MAR hypothesis is derived. In particular, our results can be applied to testing missing completely at random (MCAR). A Monte Carlo study examines finite sample performance of our test statistic. An empirical illustration analyzes the nonresponse mechanism in labor income questions
Testing Missing at Random using Instrumental Variables
This paper proposes a test for missing at random (MAR). TheMARassumption is shown to be testable given instrumental variables which are independent of response given potential outcomes. A nonparametric testing procedure based on integrated squared distance is proposed. The statistic’s asymptotic distribution under the MAR hypothesis is derived. We demonstrate that our results can be easily extended to a test of missing completely at random (MCAR) and missing completely at random conditional on covariates X (MCAR(X)). A Monte Carlo study examines finite sample performance of our test statistic. An empirical illustration concerns pocket prescription drug spending with missing values; we reject MCAR but fail to reject MAR
IT outsourcing and firm productivity : eliminating bias from selective missingness in the dependent variable
Missing values are a major problem in all econometric applications based on survey data. A standard approach assumes data are missing-at-random and uses imputation methods, or even listwise deletion. This approach is justified if item non-response does not depend on the potentially missing variables’ realization.
However, assuming missing-at-random may introduce bias if non-response is, in fact, selective. Relevant applications range from financial or strategic firm-level data to individual-level data on income or privacy-sensitive behaviors. In this paper, we propose a novel approach to deal with selective item nonresponse in the model’s dependent variable. Our approach is based on instrumental variables that affect selection only through potential outcomes. In addition, we allow for endogenous regressors. We establish identification of the structural parameter and propose a simple two-step estimation procedure for it.
Our estimator is consistent and robust against biases that would prevail when assuming missingness at random. We implement the estimation procedure using firm-level survey data and a binary instrumental variable to estimate the effect of outsourcing on productivity
Adaptive, Rate-Optimal Hypothesis Testing in Nonparametric IV Models
We propose a new adaptive hypothesis test for polyhedral cone (e.g., monotonicity, convexity) and equality (e.g., parametric, semiparametric) restrictions on a structural function in a nonparametric instrumental variables (NPIV) model. Our test statistic is based on a modified leave-one-out sample analog of a quadratic distance between the restricted and unrestricted sieve NPIV estimators. We provide computationally simple, data-driven choices of sieve tuning parameters and adjusted chi-squared critical values. Our test adapts to the unknown smoothness of alternative functions in the presence of unknown degree of endogeneity and unknown strength of the instruments. It attains the adaptive minimax rate of testing in L2. That is, the sum of its type I error uniformly over the composite null and its type II error uniformly over nonparametric alternative models cannot be improved by any other hypothesis test for NPIV models of unknown regularities. Data-driven confidence sets in L2 are obtained by inverting the adaptive test. Simulations con rm that our adaptive test controls size and its nite-sample power greatly exceeds existing non-adaptive tests for monotonicity and parametric restrictions in NPIV models. Empirical applications to test for shape restrictions of differentiated products demand and of Engel curves are presented
- …