5,563 research outputs found

    A New Satellite Image Map of King George Island (South Shetland Islands, Antarctica)

    Get PDF

    Slowing Down and Scattering of Ions in Solids

    Get PDF
    The interaction of particle beams with solids yields three parts, i.e. reflected particles, penetrating particles and trapped particles. At very low energies particle reflection is dominant, at very high energies penetration is the most important effect. Trapped particles are the result of energy loss processes, which on the other hand cause radiation damage in the solid. In the energy range discussed here, i.e. above energies where quantum effects, diffraction etc. are important and below energies where nuclear reactions, relativistic effects etc. may occur, the particle trajectories are classical. The energy loss process can be treated separately as nuclear and electronic stopping power. The collisions of the projectiles with target atoms are hence binary collisions involving a properly chosen screened Coulomb-potential. In single crystals the structural properties enable channeling, which is a very useful tool in sol id state analysis. The electronic stopping includes contributions from single collision processes and collective excitations. Both effects can be described by a dielectric response function. The range of applications covers analytical methods, means to modify solid state properties and also the production of thin films

    Faint Gigahertz peaked spectrum sources and the evolution of young radio sources

    Full text link
    GPS sources are the objects of choice to study the initial evolution of extragalactic radio sources, since it is most likely that they are the young counterparts of large scale radio sources. Correlations found between their peak frequency, peak flux density and angular size provide strong evidence that synchrotron self absorption is the cause of the spectral turnovers, and indicate that young radio sources evolve in a self-similar way. The difference in redshift distribution between young and old radio sources must be due to a difference in slope of their luminosity functions, and we argue that this slope is strongly affected by the luminosity evolution of the individual sources. A luminosity evolution scenario is proposed in which GPS sources increase in luminosity and large scale radio sources decrease in luminosity with time. It is shown that such a scenario agrees with the local luminosity function of GPS galaxies.Comment: Late, 6 pages, 2 figs. To appear in the proceedings of EVN/JIVE Symposium No 4, New Astronomy Reviews (eds. Garrett et al.). For related papers, see http://www.ast.cam.ac.uk/~snelle

    SPUTTER DEPTH PROFILING OF OPTICAL WAVEGUIDES USING SECONDARY ION MASS SPECTROMETRY

    Get PDF
    The technique of sputter depth profiling by means of secondary ion mass spectrometry of samples with high resistivity is reviewed. As examples we discuss optical waveguides made in lithium niobate by titanium indiffusion and implantation and also yttrium iron garnet waveguides grown by liquid phase epitaxy on gadolinium gallium garnet. Depth profiling of these waveguide structures has been performed and the necessary precautions to prevent charging by the primary ion beam are discussed. In some cases, coating with a metallic layer is adequate, but a more universal method is charge neutralization by an additional electron beam

    No asymmetric outflows from Sagittarius A* during the pericenter passage of the gas cloud G2

    Full text link
    The gas cloud G2 falling toward Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, is supposed to provide valuable information on the physics of accretion flows and the environment of the black hole. We observed Sgr A* with four European stations of the Global Millimeter Very Long Baseline Interferometry Array (GMVA) at 86 GHz on 1 October 2013 when parts of G2 had already passed the pericenter. We searched for possible transient asymmetric structure -- such as jets or winds from hot accretion flows -- around Sgr A* caused by accretion of material from G2. The interferometric closure phases remained zero within errors during the observation time. We thus conclude that Sgr A* did not show significant asymmetric (in the observer frame) outflows in late 2013. Using simulations, we constrain the size of the outflows that we could have missed to ~2.5 mas along the major axis, ~0.4 mas along the minor axis of the beam, corresponding to approximately 232 and 35 Schwarzschild radii, respectively; we thus probe spatial scales on which the jets of radio galaxies are suspected to convert magnetic into kinetic energy. As probably less than 0.2 Jy of the flux from Sgr A* can be attributed to accretion from G2, one finds an effective accretion rate eta*Mdot < 1.5*10^9 kg/s ~ 7.7*10^-9 Mearth/yr for material from G2. Exploiting the kinetic jet power--accretion power relation of radio galaxies, one finds that the rate of accretion of matter that ends up in jets is limited to Mdot < 10^17 kg/s ~ 0.5 Mearth/yr, less than about 20% of the mass of G2. Accordingly, G2 appears to be largely stable against loss of angular momentum and subsequent (partial) accretion at least on time scales < 1 year.Comment: 5 pages, 2 figures, 1 table; A&A Letter, in press (submitted 2015 February 26; accepted 2015 March 31

    Dust in 3C324

    Get PDF
    The results of a deep submillimetre observation using SCUBA of the powerful radio galaxy 3C324, at redshift z=1.206, are presented. At 850 microns, emission from the location of the host radio galaxy is marginally detected at the 4.2 sigma level, 3.01 +/- 0.72 mJy, but there is no detection of emission at 450 microns to a 3 sigma limit of 21 mJy. A new 32 GHz radio observation using the Effelsberg 100m telescope confirms that the sub-millimetre signal is not associated with synchrotron emission. These observations indicate that both the mass of warm dust within 3C324, and the star formation rate, lie up to an order of magnitude below the values recently determined for radio galaxies at z = 3 to 4. The results are compared with dust masses and star formation rates derived in other ways for 3C324.Comment: 5 pages LaTeX, including 1 figure. Accepted for publication in MNRA

    A new sample of faint Gigahertz Peaked Spectrum radio sources

    Get PDF
    The Westerbork Northern Sky Survey (WENSS) has been used to select a sample of Gigahertz Peaked Spectrum (GPS) radio sources at flux densities one to two orders of magnitude lower than bright GPS sources investigated in earlier studies. Sources with inverted spectra at frequencies above 325 MHz have been observed with the WSRT at 1.4 and 5 GHz and with the VLA at 8.6 and 15 GHz to select genuine GPS sources. This has resulted in a sample of 47 GPS sources with peak frequencies ranging from ~500 MHz to >15 GHz, and peak flux densities ranging from ~40 to ~900 mJy. Counts of GPS sources in our sample as a function of flux density have been compared with counts of large scale sources from WENSS scaled to 2 GHz, the typical peak frequency of our GPS sources. The counts can be made similar if the number of large scale sources at 2 GHz is divided by 250, and their flux densities increase by a factor of 10. On the scenario that all GPS sources evolve into large scale radio sources, these results show that the lifetime of a typical GPS source is ~250 times shorter than a typical large scale radio source, and that the source luminosity must decrease by a factor of ~10 in evolving from GPS to large scale radio source. However, we note that the redshift distributions of GPS and large scale radio sources are different and that this hampers a direct and straightforward interpretation of the source counts. Further modeling of radio source evolution combined with cosmological evolution of the radio luminosity function for large sources is required.Comment: LaTeX, 15 pages, 8 figs. To be published in A&AS. For more info see http://www.ast.cam.ac.uk/~snelle
    • …
    corecore