1,273 research outputs found

    The friction and wear properties of sputtered hard refractory compounds

    Get PDF
    Several refractory silicide, boride, and carbide coatings were examined. The coatings were applied to type 440C steel surfaces by radio-frequency sputtering. The friction and wear properties of the coatings were found to be related to stoichiometry and impurity content of the bulk coating as well as the degree of interfacial adherence between coating and substrate. Bulk coating stoichiometry could to a large extent be controlled by the application of a negative bias voltage during deposition. Adherence was promoted by the formation of an oxidized layer at the interface. Deliberate preoxidizing of the 440C produced enhanced adherence for many compounds which are related to the formation of a mixed oxide transition region

    Friction and wear properties of three hard refractory coatings applied by radiofrequency sputtering

    Get PDF
    The adherence, friction, and wear properties of thin hard refractory compound coatings applied to 440C bearing steel by radiofrequency sputtering were investigated. Friction and wear tests were done with nonconforming pin on disk specimens. The compounds examined were chromium carbide, molybdenum silicide, and titanium carbide. The adherence, friction, and wear were markedly improved by the application of a bias voltage to the bearing steel substrate during coating deposition. Analysis by X-ray photoelectron spectroscopy indicated that the improvement may be due to a reduction in impurities in bias deposited coatings. A fivefold reduction in oxygen concentration in MoSi2 coating by biasing was noted. Chromium carbide was not effective as an antiwear coating. Molybdenum silicide provided some reduction in both friction and wear. Titanium carbide exhibited excellent friction and antiwear properties at light loads. Plastic flow and transfer of the coating material onto the pin specimen appears to be important in achieving low friction and wear

    The worldwide market for photovoltaics in the rural sector

    Get PDF
    The worldwide market for stand-alone photovoltaic power systems in three specific segments of the rural sector were determined. The worldwide market for photovoltaic power systems for village power, cottage industry, and agricultural applications were addressed. The objectives of these studies were to: The market potential for small stand-alone photovoltaic power system in specific application areas was assessed. Technical, social and institutional barriers to PV utilization were identified. Funding sources available to potential users was also identified and marketing strategies appropriate for each sector were recommended to PV product manufacturers. The studies were prepared on the basis of data gathered from domestic sources and from field trips to representative countries. Both country-specific and sector-specific results are discussed, and broadly applicable barriers pertinent to international marketing of PV products are presented

    Analysis of the economics of photovoltaic-diesel-battery energy systems for remote applications

    Get PDF
    Computer simulations were conducted to analyze the performance and operating cost of a photovoltaic energy source combined with a diesel generator system and battery storage. The simulations were based on the load demand profiles used for the design of an all photovoltaic energy system installed in the remote Papago Indian Village of Schuchuli, Arizona. Twenty year simulations were run using solar insolation data from Phoenix SOLMET tapes. Total energy produced, energy consumed, operation and maintenance costs were calculated. The life cycle and levelized energy costs were determined for a variety of system configurations (i.e., varying amounts of photovoltaic array and battery storage)

    Induction heating simplifies metal evaporation for ion plating

    Get PDF
    Evaporation by induction heating produces significant degree of metal ionization, enhancing degree of penetration of evaporant on substrate

    Refractory coatings and method of producing the same

    Get PDF
    The adhesion, friction, and wear properties of sputtered refractory coatings on substrates of materials that form stable nitrides is improved by placing each substrate directly below a titanium carbide target of a commercial radiofrequency diode apparatus in a vacuum chamber. Nitrogen is bled into the system through a nozzle resulting in a small partial pressure of about 0.5% to 2.5% during the first two minutes of deposition. The flow of nitrogen is then stopped, and the sputtering ambient is reduced to pure argon through a nozzle without interrupting the sputtering process. When nitrogen is deliberately introduced during the crucial interface formation, some of the titanium at the interface reacts to form titanium nitride while the metal of the substrate also forms the nitride. These two nitrides atomically mixed together in the interfacial region act to more strongly bond the growing titanium carbide coating as it forms on the substrate

    Scanning-electron-microscope used in real-time study of friction and wear

    Get PDF
    Small friction and wear apparatus built directly into scanning-electron-microscope provides both dynamic observation and microscopic view of wear process. Friction and wear tests conducted using this system have indicated that considerable information can readily be gained

    Effect of oxygen concentration in ZDP containing oils on surface composition and wear

    Get PDF
    A pin-on-disk wear study was performed with the lubricants dibutyl sebacate (DBS) and mineral oil (MO) with and without 1 weight percent zinc-dialkyl-dithiophospatee (ZDP) as an additive. The pin was annealed pure iron and the disk was M-2 tool steel. The selected load and speed guaranteed boundary lubrication. The ambient atmospheric oxygen concentration in an oxygen-nitrogen mixture was varied from 0 percent to 20 percent in order to examine its relationship to ZDP effectiveness. Auger electron spectroscopy combined with argon ion bombardment (depth profiling) was used to determine surface elemental composition on the pin when tested in DBS with and without ZDP. The ambient atmosphere was found to cause large variations in wear rate and surface composition. With MO, ZDP reduced wear under all conditions, but had little advantage over oxides formed at 20 percent oxygen atmosphere. With DBS, ZDP reduced wear at 0 percent oxygen, but gave varied results at other oxygen concentrations. Depth profiling revealed sulfuide formation at 0 percent oxygen and probably sulfates at 20 percent oxygen. The results are significant because varied oxygen concentrations can occur under actual lubricating conditions in practical machinery

    Adhesive material transfer in the erosion of an aluminum alloy

    Get PDF
    In order to study the basic mechanisms of erosion, hardened steel balls were shot into annealed 6061 Al alloy targets at velocity of up to 150 m/sec. The projectiles were collected and examined by a scanning electron microscope combined with energy-dispersive X-ray analyzer and it was found that target material in substantial amounts is adhesively transferred to the projectile. The transferred material forms on the projectile surface a layer the thickness of which increases with increases in impact velocity

    Evaluation and auger analysis of a zinc-dialkyl-dithiophosphate antiwear additive in several diester lubricants

    Get PDF
    The wear of pure iron in sliding contact with hardened M-2 tool steel was measured for a series of synthetic diester fluids, both with and without a zinc dialkyl dithiophosphate (ZDP) antiwear additive, as test lubricants. Selected wear scars were analyzed by an Auger emission spectroscopy (AES) depth profiling technique in order to assess the surface film elemental composition. The ZDP was an effective antiwear additive for all the diesters except dibutyl oxalate and dibutyl sebacate. The high wear measured for the additive-containing oxalate was related to corrosion; the higher wear measured for the additive-containing sebacate was due to an oxygen interaction. The AES of dibutyl sebacate surfaces run in dry air and in dry nitrogen showed large differences only in the amount of oxygen present. The AES of worn surfaces where the additive was effective showed no zinc, only a little phosphorus, and large amounts of sulfur
    corecore