53 research outputs found
Flexible and Binder-Free Iron Phosphide Electrodes Using a Three-Dimensional Support for High Hydrogen Productivity
In this work, an inexpensive and reliable microstructured electrode for the hydrogen evolution reaction (HER) is developed. This cathode is made of Earth-abundant elements consisting of iron phosphide as an electrocatalyst and carbon felt (CF) as a flexible conductive scaffold. Its porous character and binder-free FeP coverage over the carbon fibers generate a high number of accessible active sites for the reaction, achieving a high value of the electrochemically active surface area. The electrode reaches 100 mA ⋅ cm by applying only −53 mV vs RHE at 50 °C in 0.5 M HSO, demonstrating excellent electrocatalytic activity for the HER and outstanding stability in acidic electrolyte. Furthermore, the feasibility of these electrodes for industrial application is evaluated using a PEM electrolyzer. The developed prototype with a cathodic area of 1.8 cm shows a very promising performance, reaching 14.9 mmol H ⋅ h ⋅ cm (corresponding to 800 mA ⋅ cm) at a voltage of only 2.1 V
Enhancement of proximity induced superconductivity in planar Germanium
Holes in planar Ge have high mobilities, strong spin-orbit interaction and electrically tunable g-factors, and are therefore emerging as a promising candidate for hybrid superconductorsemiconductor devices. This is further motivated by the observation of supercurrent transport in planar Ge Josephson Field effect transistors (JoFETs). A key challenge towards hybrid germanium quantum technology is the design of high quality interfaces and superconducting contacts that are robust against magnetic fields. By combining the assets of Al, which has a long superconducting coherence, and Nb, which has a significant superconducting gap, we form low-disordered JoFETs with large ICRN products that are capable of withstanding high magnetic fields. We furthermore demonstrate the ability of phase-biasing individual JoFETs opening up an avenue to explore topological superconductivity in planar Ge. The persistence of superconductivity in the reported hybrid devices beyond 1.8 T paves the way towards integrating spin qubits and proximity-induced superconductivity on the same chip
Reducing charge noise in quantum dots by using thin silicon quantum wells
Charge noise in the host semiconductor degrades the performance of spin-qubits and poses an obstacle to control large quantum processors. However, it is challenging to engineer the heterogeneous material stack of gate-defined quantum dots to improve charge noise systematically. Here, we address the semiconductor-dielectric interface and the buried quantum well of a 28 Si/SiGe heterostructure and show the connection between charge noise, measured locally in quantum dots, and global disorder in the host semiconductor, measured with macroscopic Hall bars. In 5 nm thick 28 Si quantum wells, we find that improvements in the scattering properties and uniformity of the two-dimensional electron gas over a 100 mm wafer correspond to a significant reduction in charge noise, with a minimum value of 0.29 ± 0.02 μeV/Hz ½ at 1 Hz averaged over several quantum dots. We extrapolate the measured charge noise to simulated dephasing times to -gate fidelities that improve nearly one order of magnitude. These results point to a clean and quiet crystalline environment for integrating long-lived and high-fidelity spin qubits into a larger system. Charge noise degrades the performance of spin qubits hindering scalability. Here the authors engineer the heterogeneous material stack in 28 Si/SiGe gate-defined quantum dots, to improve the scattering properties and to reduce charge noise
Author Correction : Reducing charge noise in quantum dots by using thin silicon quantum wells
The original version of this Article omitted fromthe author list the author Amir Sammakwho is from the 'QuTech and Netherlands Organisation for Applied Scientific Research (TNO), Delft, The Netherlands'. This has been corrected in both the PDF and HTML versions of the Article
Strong charge-photon coupling in planar germanium enabled by granular aluminium superinductors
A singlet triplet hole spin qubit in planar Ge
Spin qubits are considered to be among the most promising candidates for
building a quantum processor. GroupIV hole spin qubits have moved into the
focus of interest due to the ease of operation and compatibility with Si
technology. In addition, Ge offers the option for monolithic
superconductor-semiconductor integration. Here we demonstrate a hole spin qubit
operating at fields below 10 mT, the critical field of Al, by exploiting the
large out-of-plane hole g-factors in planar Ge and by encoding the qubit into
the singlet-triplet states of a double quantum dot. We observe electrically
controlled g-factor-difference-driven and exchange-driven rotations with
tunable frequencies exceeding 100 MHz and dephasing times of 1 s which we
extend beyond 150 s with echo techniques. These results demonstrate that
Ge hole singlet-triplet qubits are competing with state-of-the art GaAs and Si
singlet-triplet qubits. In addition, their rotation frequencies and coherence
are on par with Ge single spin qubits, but they can be operated at much lower
fields underlining their potential for on chip integration with superconducting
technologies
Evaluating the local bandgap across InxGa1-xAs multiple quantum wells in a metamorphic laser via low-loss EELS
We investigate spatially resolved variations in the bandgap energy across multiple InxGa1-xAs quantum wells (QWs) on a GaAs substrate within a metamorphic laser structure. Using high resolution scanning transmission electron microscopy and low-loss electron energy loss spectroscopy, we present a detailed analysis of the local bandgap energy, indium concentration, and strain distribution within the QWs. Our findings reveal significant inhomogeneities, particularly near the interfaces, in both the strain and indium content, and a bandgap variability across QWs. These results are correlated with density functional theory simulations to further elucidate the interplay between strain, composition, and bandgap energy. This work underscores the importance of spatially resolved analysis in understanding, and optimising, the electronic and optical properties of semiconductor devices. The study suggests that the collective impact of individual QWs might affect the emission and performance of the final device, providing insights for the design of next-generation metamorphic lasers with multiple QWs as the active region
Ballistic InSb Nanowires and Networks via Metal-Sown Selective Area Growth
Selective area growth is a promising technique to realize semiconductor-superconductor hybrid nanowire networks, potentially hosting topologically protected Majorana-based qubits. In some cases, however, such as the molecular beam epitaxy of InSb on InP or GaAs substrates, nucleation and selective growth conditions do not necessarily overlap. To overcome this challenge, we propose a metal-sown selective area growth (MS SAG) technique, which allows decoupling selective deposition and nucleation growth conditions by temporarily isolating these stages. It consists of three steps: (i) selective deposition of In droplets only inside the mask openings at relatively high temperatures favoring selectivity, (ii) nucleation of InSb under Sb flux from In droplets, which act as a reservoir of group III adatoms, done at relatively low temperatures, favoring nucleation of InSb, and (iii) homoepitaxy of InSb on top of the formed nucleation layer under a simultaneous supply of In and Sb fluxes at conditions favoring selectivity and high crystal quality. We demonstrate that complex InSb nanowire networks of high crystal and electrical quality can be achieved this way. We extract mobility values of 10※000-25※000 cm V s consistently from field-effect and Hall mobility measurements across single nanowire segments as well as wires with junctions. Moreover, we demonstrate ballistic transport in a 440 nm long channel in a single nanowire under a magnetic field below 1 T. We also extract a phase-coherent length of ∼8 μm at 50 mK in mesoscopic rings
Low disorder and high valley splitting in silicon
The electrical characterisation of classical and quantum devices is a
critical step in the development cycle of heterogeneous material stacks for
semiconductor spin qubits. In the case of silicon, properties such as disorder
and energy separation of conduction band valleys are commonly investigated
individually upon modifications in selected parameters of the material stack.
However, this reductionist approach fails to consider the interdependence
between different structural and electronic properties at the danger of
optimising one metric at the expense of the others. Here, we achieve a
significant improvement in both disorder and valley splitting by taking a
co-design approach to the material stack. We demonstrate isotopically-purified,
strained quantum wells with high mobility of 3.14(8)10 cm/Vs
and low percolation density of 6.9(1)10 cm. These low
disorder quantum wells support quantum dots with low charge noise of 0.9(3)
eV/Hz and large mean valley splitting energy of 0.24(7) meV,
measured in qubit devices. By striking the delicate balance between disorder,
charge noise, and valley splitting, these findings provide a benchmark for
silicon as a host semiconductor for quantum dot qubits. We foresee the
application of these heterostructures in larger, high-performance quantum
processors
- …