77 research outputs found

    How human papillomavirus replication and immune evasion strategies take advantage of the host DNA damage repair machinery

    Get PDF
    The DNA damage response (DDR) is a complex signalling network activated when DNA is altered by intrinsic or extrinsic agents. DDR plays important roles in genome stability and cell cycle regulation, as well as in tumour transformation. Viruses have evolved successful life cycle strategies in order to ensure a chronic persistence in the host, virtually avoiding systemic sequelae and death. This process promotes the periodic shedding of large amounts of infectious particles to maintain a virus reservoir in individual hosts, while allowing virus spreading within the community. To achieve such a successful lifestyle, the human papilloma virus (HPV) needs to escape the host defence systems. The key to understanding how this is achieved is in the virus replication process that provides by itself an evasion mechanism by inhibiting and delaying the host immune response against the viral infection. Numerous studies have demonstrated that HPV exploits both the ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia and rad3-related (ATR) DDR pathways to replicate its genome and maintain a persistent infection by downregulating the innate and cell-mediated immunity. This review outlines how HPV interacts with the ATM-and ATR-dependent DDR machinery during the viral life cycle to create an environment favourable to viral replication, and how the interaction with the signal transducers and activators of transcription (STAT) protein family and the deregulation of the Janus kinase (JAK)-STAT pathways may impact the expression of interferon-inducible genes and the innate immune responses

    The Emerging Role of Microbial Biofilm in Lyme Neuroborreliosis

    Get PDF
    Lyme borreliosis (LB) is the most common tick-borne disease caused by the spirochete Borrelia burgdorferi in North America and Borrelia afzelii or Borrelia garinii in Europe and Asia, respectively. The infection affects multiple organ systems, including the skin, joints, and the nervous system. Lyme neuroborreliosis (LNB) is the most dangerous manifestation of Lyme disease, occurring in 10-15% of infected individuals. During the course of the infection, bacteria migrate through the host tissues altering the coagulation and fibrinolysis pathways and the immune response, reaching the central nervous system (CNS) within 2 weeks after the bite of an infected tick. The early treatment with oral antimicrobials is effective in the majority of patients with LNB. Nevertheless, persistent forms of LNB are relatively common, despite targeted antibiotic therapy. It has been observed that the antibiotic resistance and the reoccurrence of Lyme disease are associated with biofilm-like aggregates in B. burgdorferi, B. afzelii, and B. garinii, both in vitro and in vivo, allowing Borrelia spp. to resist to adverse environmental conditions. Indeed, the increased tolerance to antibiotics described in the persisting forms of Borrelia spp., is strongly reminiscent of biofilm growing bacteria, suggesting a possible role of biofilm aggregates in the development of the different manifestations of Lyme disease including LNB

    Biofilm is a major virulence determinant in bacterial colonization of chronic skin ulcers independently from the multidrug resistant phenotype

    Get PDF
    Bacterial biofilm is a major factor in delayed wound healing and high levels of biofilm production have been repeatedly described in multidrug resistant organisms (MDROs). Nevertheless, a quantitative correlation between biofilm production and the profile of antimicrobial drug resistance in delayed wound healing remains to be determined. Microbial identification, antibiotic susceptibility and biofilm production were assessed in 135 clinical isolates from 87 patients. Gram-negative bacteria were the most represented microorganisms (60.8%) with MDROs accounting for 31.8% of the total isolates. Assessment of biofilm production revealed that 80% of the strains were able to form biofilm. A comparable level of biofilm production was found with both MDRO and not-MDRO with no significant differences between groups. All the methicillin-resistant Staphylococcus aureus (MRSA) and 80% of Pseudomonas aeruginosa MDR strains were found as moderate/high biofilm producers. Conversely, less than 17% of Klebsiella pneumoniae extended-spectrum beta-lactamase (ESBL), Escherichia coli-ESBL and Acinetobacter baumannii were moderate/high biofilm producers. Notably, those strains classified as non-biofilm producers, were always associated with biofilm producer bacteria in polymicrobial colonization. This study shows that biofilm producers were present in all chronic skin ulcers, suggesting that biofilm represents a key virulence determinant in promoting bacterial persistence and chronicity of ulcerative lesions independently from the MDRO phenotype

    A laboratory test based on determination of cytokine profiles: a promising assay to identify exposition to contact allergens and predict the clinical outcome in occupational allergic contact dermatitis

    Get PDF
    BACKGROUND: Para-phenylenediamine (PPD) is the main allergen causing adverse reactions to hair dyes and a frequent cause of occupational-related skin sensitization among hairdressers and beauticians. The immunologic mechanism of the disease relies on the production of inflammatory cytokines by allergen-specific T cells, while regulatory T cells are thought to down-modulate the allergic response. This study was aimed at investigating the expression of effector or regulatory cytokines in exposed subjects in order to verify whether different cytokine profiles might predict distinct clinical outcomes. Peripheral blood mononuclear cells (PBMC) from 21 subjects occupationally exposed or not (10) to PPD were kept in short term cultures in the presence of optimized concentrations of NiSO4 × 6H2O or PPD. The production of IFN-γ and IL-10 elicited by antigens were analyzed by the ELISpot assay. RESULTS: The presence of IFN-γ responses toward PPD was significantly correlated with a positive patch test (P = 0.002) and allergic symptoms, while IL10 responses were invariably found in PPD-exposed but clinically asymptomatic subjects with negative patch testing. We found concordance between the different cytokine profiles and patch test results. No false-positive results were found for the different cytokine profiles induced by PPD, resulting in 100% specificity. The sensitivity of the test was 87.5% (95% CI 65.9-100.0) with an overall test accuracy of 93.3%. Although larger prospective-retrospective studies are necessary to validate the predictive potential of the test, the negative and positive predicted values for PPD in this study were NPV = 87.5% and PPV = 100%, respectively. CONCLUSIONS: These data indicate that distinct cytokine profiles are associated with different clinical manifestations. The test, which is based on a simple and rapid profiling of cytokine responses by T lymphocytes against allergens, has proven to be a promising laboratory tool, useful for both the identification of previous contact with allergens and the etiologic diagnosis of contact allergies as well as capable of predicting the clinical outcome (development of an allergic or tolerant response)

    Effect of Feed Restriction on the Behaviour and Welfare of Broiler Chickens

    Get PDF
    [EN] Under intensive rearing conditions, the welfare of broiler chickens may be at risk depending on genotype and sex, due to their different growth rates. The practice of quantitative feed restriction may also impact on welfare. This study aimed to evaluate behaviour and corticosterone content in plasma and faeces at different ages using 896 one-day-old chicks housed in 32 pens, allocated to 8 groups, i.e., 2 genotypes (standard vs. high breast yield) × 2 sex × 2 feeding plans (ad libitum vs. restricted, AL vs. FR). The feeding system affected the percentage of standing (9.84% vs. 11.7% in AL vs. FR; p ¿ 0.001), feeding (7.51% vs. 8.17%; p ¿ 0.01) and sitting/lying (67.0% vs. 64.1%; p ¿ 0.001), and the faeces corticosterone content (12.2 vs. 13.6 ng/g in AL vs. FR; p ¿ 0.10). Sex affected the percentage of pecking other chickens, standing and comfort behaviours. Changes in behaviour were recorded between high and standard breast yield genotypes with faeces corticosterone which tended to be higher in the former (p ¿ 0.10). Significant interactions between the main factors and age were observed. Major changes in behaviour were due to feed restriction, which stimulated activity during restriction.This study was funded by the University of Padova (Year 2013; Research Project CUP: C24G14000090001). The Visiting Scientist grant held by Peter White is funded by the University of Padova (year 2019). The PhD grant held by Giulio Pillan is funded by Unismart and OFFICINE FACCO & C Spa (year 2019). The Ph.D. grant held by Francesco Bordignon is funded by the ECCEAQUA project (MIUR; CUP: C26C18000030004).Trocino, A.; White, P.; Bordignon, F.; Ferrante, V.; Bertotto, D.; Birolo, M.; Pillan, G.... (2020). Effect of Feed Restriction on the Behaviour and Welfare of Broiler Chickens. Animals. 10(5). https://doi.org/10.3390/ani1005083010

    Advancing Sustainability: Geraniol-Enhanced Waterborne Acrylic Pressure-Sensitive Adhesives without Chemical Modification

    Get PDF
    The escalating global emphasis on sustainability, coupled with stringent regulatory frameworks, has spurred the quest for environmentally viable alternatives to petroleum-derived materials. Within this context, the adhesives industry has been actively seeking renewable options and eco-friendly synthesis pathways. This study introduces geraniol, a monoterpenoid alcohol, in its unmodified form, as a key component in the production of waterborne pressure-sensitive adhesives (PSAs) based on acrylic latex through emulsion polymerization. Multiple formulations were developed at varying reaction times. The adhesives underwent comprehensive chemical characterization employing techniques such as Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Nuclear Magnetic Resonance (NMR), Gel Permeation Chromatography (GPC), and dynamic light scattering (DLS). The viscosities of the formulations were measured between 4000 and 5000 cP. Adhesion tests showed peel strength values of 0.52 N/mm on cardboard and 0.32 N/mm on painted steel for the geraniol-based formulations. The results demonstrate the potential for geraniol-based PSAs to offer a sustainable alternative to petroleum-derived adhesives, with promising thermal and adhesive properties

    Decreased levels of metalloproteinase-9 and angiogenic factors in skin lesions of patients with psoriatic arthritis after therapy with anti-TNF-α

    Get PDF
    BACKGROUND: Inflammation represents an early and key event in the development of both the cutaneous psoriasis and psoriatic arthritis. Compelling evidences indicate that the production of TNF-α plays a central role in psoriasis by sustaining the inflammatory process in the skin as well as in the joints. Among the multiple effects produced by TNF-α on keratinocytes, the induction of matrix metalloproteinase-9 (MMP-9), a collagenase implicated in joint inflammatory arthritis which acts as an angiogenesis promoting factor, might represent a key mechanism in the pathogenesis of the disease. Aims of the present study were to investigate a) the role of MMP-9 in the development of psoriasis by assessing the presence of MMP-9 in lesional skin and in sera of psoriatic patients; b) the association of MMP-9 with the activity of the disease; c) the relationship between MMP-9 and TNF-α production. METHODS: Eleven psoriatic patients, clinically presenting joint symptoms associated to the cutaneous disease, were included in a therapeutic protocol based on the administration of anti-TNF-α monoclonal antibody (Infliximab). Sera and skin biopsies were collected before treatment and after 6 weeks of therapy. Tissues were kept in short term cultures and production soluble mediators such as TNF-α, MMP-9, MMP-2, VEGF and E-Selectin, which include angiogenic molecules associated to the development of plaque psoriasis, were measured in the culture supernatants by immunoenzymatic assays (ng/ml or pg/ml per mg of tissue). MMP-9 concentrations were also measured in the sera. The cutaneous activity of disease was evaluated by the Psoriasis Area and Severity Index (PASI). RESULTS: Clinical and laboratory assessment indicated that all but one patients had a significant improvement of the PASI score after three months of therapy. The clinical amelioration was associated to a significant decrease of MMP-9 (P = 0.017), TNF-α (P = 0.005) and E-selectin (P = 0.018) levels, spontaneously released by lesional biopsies before and after therapy. In addition, significant correlations were found between the PASI measurements and TNF-α (r(2 )= 0.33, P = 0.005), MMP-9 (r(2 )= 0.25, P = 0.017), E-selectin (r(2 )= 0.24, P = 0.018) production. MMP-9 levels were significantly correlated with those of TNF-α (r(2 )= 0.30, P = 0.008). A significant decrease of MMP-9 in the sera, associated to the clinical improvement was also found. CONCLUSION: Our findings show the existence of a direct relationship between MMP-9 and TNF-α production strongly suggesting that MMP-9 may play a key role in the skin inflammatory process in psoriasis

    Molecular and Immunological Characterization of Staphylococcus aureus in Pediatric Atopic Dermatitis: Implications for Prophylaxis and Clinical Management

    Get PDF
    S. aureus represents a critical cofactor in atopic dermatitis (AD). In this paper, the prevalence of S. aureus infection/colonization was evaluated in 117 children as well as in their cohabitants, in order to assess the value of S. aureus characterization in predicting disease onset and severity and in providing indications for prophylaxis. Results showed that children with AD as well as their cohabitants had a significantly greater incidence of S. aureus infection/colonization as compared to controls. The genetic characterization showed a virtual identity of the bacteria strains collected at different sites of the patients with those found in the cohabitants, suggesting both a direct transmission between the nasal reservoir and the lesions in the same atopic subject and a risk for reinfection within family cohabitants. These data stress the need of preliminary laboratory assessment and posttherapy control in both AD patients and their close contacts for effective S. aureus eradication

    A glia-enriched stem cell 3D model of the human brain mimics the glial-immune neurodegenerative phenotypes of multiple sclerosis

    Get PDF
    The role of central nervous system (CNS) glia in sustaining self-autonomous inflammation and driving clinical progression in multiple sclerosis (MS) is gaining scientific interest. We applied a single transcription factor (SOX10)-based protocol to accelerate oligodendrocyte differentiation from human induced pluripotent stem cell (hiPSC)-derived neural precursor cells, generating self-organizing forebrain organoids. These organoids include neurons, astrocytes, oligodendroglia, and hiPSC-derived microglia to achieve immunocompetence. Over 8 weeks, organoids reproducibly generated mature CNS cell types, exhibiting single-cell transcriptional profiles similar to the adult human brain. Exposed to inflamed cerebrospinal fluid (CSF) from patients with MS, organoids properly mimic macroglia-microglia neurodegenerative phenotypes and intercellular communication seen in chronic active MS. Oligodendrocyte vulnerability emerged by day 6 post-MS-CSF exposure, with nearly 50% reduction. Temporally resolved organoid data support and expand on the role of soluble CSF mediators in sustaining downstream events leading to oligodendrocyte death and inflammatory neurodegeneration. Such findings support the implementation of this organoid model for drug screening to halt inflammatory neurodegeneration
    corecore