83 research outputs found
Pi-Calculus in Logical Form
Abramsky’s logical formulation of domain theory is extended to encompass the domain theoretic model for picalculus processes of Stark and of Fiore, Moggi and Sangiorgi. This is done by defining a logical counterpart of categorical constructions including dynamic name allocation and name exponentiation, and showing that they are dual to standard constructs in functor categories. We show that initial algebras of functors defined in terms of these constructs give rise to a logic that is sound, complete, and characterises bisimilarity. The approach is modular, and we apply it to derive a logical formulation of pi-calculus. The resulting logic is a modal calculus with primitives for input, free output and bound output
Presenting Distributive Laws
Distributive laws of a monad T over a functor F are categorical tools for
specifying algebra-coalgebra interaction. They proved to be important for
solving systems of corecursive equations, for the specification of well-behaved
structural operational semantics and, more recently, also for enhancements of
the bisimulation proof method. If T is a free monad, then such distributive
laws correspond to simple natural transformations. However, when T is not free
it can be rather difficult to prove the defining axioms of a distributive law.
In this paper we describe how to obtain a distributive law for a monad with an
equational presentation from a distributive law for the underlying free monad.
We apply this result to show the equivalence between two different
representations of context-free languages
Interacting via the Heap in the Presence of Recursion
Almost all modern imperative programming languages include operations for
dynamically manipulating the heap, for example by allocating and deallocating
objects, and by updating reference fields. In the presence of recursive
procedures and local variables the interactions of a program with the heap can
become rather complex, as an unbounded number of objects can be allocated
either on the call stack using local variables, or, anonymously, on the heap
using reference fields. As such a static analysis is, in general, undecidable.
In this paper we study the verification of recursive programs with unbounded
allocation of objects, in a simple imperative language for heap manipulation.
We present an improved semantics for this language, using an abstraction that
is precise. For any program with a bounded visible heap, meaning that the
number of objects reachable from variables at any point of execution is
bounded, this abstraction is a finitary representation of its behaviour, even
though an unbounded number of objects can appear in the state. As a
consequence, for such programs model checking is decidable.
Finally we introduce a specification language for temporal properties of the
heap, and discuss model checking these properties against heap-manipulating
programs.Comment: In Proceedings ICE 2012, arXiv:1212.345
Sound and complete axiomatizations of coalgebraic language equivalence
Coalgebras provide a uniform framework to study dynamical systems, including
several types of automata. In this paper, we make use of the coalgebraic view
on systems to investigate, in a uniform way, under which conditions calculi
that are sound and complete with respect to behavioral equivalence can be
extended to a coarser coalgebraic language equivalence, which arises from a
generalised powerset construction that determinises coalgebras. We show that
soundness and completeness are established by proving that expressions modulo
axioms of a calculus form the rational fixpoint of the given type functor. Our
main result is that the rational fixpoint of the functor , where is a
monad describing the branching of the systems (e.g. non-determinism, weights,
probability etc.), has as a quotient the rational fixpoint of the
"determinised" type functor , a lifting of to the category of
-algebras. We apply our framework to the concrete example of weighted
automata, for which we present a new sound and complete calculus for weighted
language equivalence. As a special case, we obtain non-deterministic automata,
where we recover Rabinovich's sound and complete calculus for language
equivalence.Comment: Corrected version of published journal articl
Coalgebraic semantics of heavy-weighted automata
We study heavy-weighted automata, a generalization of weighted automata in which the
weights of the transitions can be any formal power series. We define their semantics in three
equivalent ways, and give some examples of how they can provide a more compact representation
of certain power series than ordinary weighted automata
Coalgebraic semantics of heavy-weighted automata
We study heavy-weighted automata, a generalization of weighted automata in which the
weights of the transitions can be any formal power series. We define their semantics in three
equivalent ways, and give some examples of how they can provide a more compact representation
of certain power series than ordinary weighted automata
Coalgebraic semantics of heavy-weighted automata
We study heavy-weighted automata, a generalization of weighted automata in which the
weights of the transitions can be any formal power series. We define their semantics in three
equivalent ways, and give some examples of how they can provide a more compact representation
of certain power series than ordinary weighted automata
Coalgebraic semantics of heavy-weighted automata
We study heavy-weighted automata, a generalization of weighted automata in which the
weights of the transitions can be any formal power series. We define their semantics in three
equivalent ways, and give some examples of how they can provide a more compact representation
of certain power series than ordinary weighted automata
- …