152 research outputs found
The clustering of simulated quasars
We analyze the clustering properties of quasars simulated using a
semianalytic model built on the Millennium Simulation, with the goal of testing
scenarios in which black hole accretion and quasar activity are triggered by
galaxy mergers. When we select quasars with luminosities in the range
accessible by current observations, we find that predicted values for the
redshift evolution of the quasar bias agree rather well with the available data
and the clustering strength depends only weakly on luminosity. This is
independent of the lightcurve model assumed, since bright quasars are black
holes accreting close to the Eddington limit. We also used the large catalogues
of haloes available for the Millennium Simulation to test whether recently
merged haloes exhibit a stronger large-scale clustering than the typical haloes
of the same mass. This effect might help to explain the very high clustering
strength observed for z~4 quasars. However, we do not detect any significant
excess bias for the clustering of merger remnants, suggesting that objects of
merger-driven nature do not cluster significantly differently than other
objects of the same characteristic mass.Comment: 4 pages, 2 figures. To appear in the proceedings of "The Monster's
Fiery Breath: Feedback in Galaxies, Groups, and Clusters", Eds. Sebastian
Heinz, Eric Wilcots (AIP conference series
Black Hole Starvation and Bulge Evolution in a Milky Way-like Galaxy
We present a new zoom-in hydrodynamical simulation, "Erisbh", which follows
the cosmological evolution and feedback effects of a supermassive black hole at
the center of a Milky Way-type galaxy. ErisBH shares the same initial
conditions, resolution, recipes of gas cooling, star formation and feedback, as
the close Milky Way-analog "Eris", but it also includes prescriptions for the
formation, growth and feedback of supermassive black holes. We find that the
galaxy's central black hole grows mainly through mergers with other black holes
coming from infalling satellite galaxies. The growth by gas accretion is
minimal because very little gas reaches the sub-kiloparsec scales. The final
black hole is, at z=0, about 2.6 million solar masses and it sits closely to
the position of SgrA* on the MBH-MBulge and MBH-sigma planes, in a location
consistent with what observed for pseudobulges. Given the limited growth due to
gas accretion, we argue that the mass of the central black hole should be above
10^5 solar masses already at z~8. The effect of AGN feedback on the host galaxy
is limited to the very central few hundreds of parsecs. Despite being weak, AGN
feedback seems to be responsible for the limited growth of the central bulge
with respect to the original Eris, which results in a significantly flatter
rotation curve in the inner few kiloparsecs. Moreover, the disk of ErisBH is
more prone to instabilities, as its bulge is smaller and its disk larger then
Eris. As a result, the disk of ErisBH undergoes a stronger dynamical evolution
relative to Eris and around z=0.3 a weak bar grows into a strong bar of a few
disk scale lengths in size. The bar triggers a burst of star formation in the
inner few hundred parsecs, provides a modest amount of new fuel to the central
black hole, and causes the bulge of ErisBH to have, by z=0, a box/peanut
morphology.(Abridged)Comment: 16 pages, 16 figures. Submitted to MNRA
Bar-driven evolution and quenching of spiral galaxies in cosmological simulations
We analyse the output of the hi-res cosmological zoom-in simulation ErisBH to
study self-consistently the formation of a strong stellar bar in a Milky
Way-type galaxy and its effect on the galactic structure, on the central gas
distribution and on star formation. The simulation includes radiative cooling,
star formation, SN feedback and a central massive black hole which is
undergoing gas accretion and is heating the surroundings via thermal AGN
feedback. A large central region in the ErisBH disk becomes bar-unstable after
z~1.4, but a clear bar-like structure starts to grow significantly only after
z~0.4, possibly triggered by the interaction with a massive satellite. At z~0.1
the bar reaches its maximum radial extent of l~2.2 kpc. As the bar grows, it
becomes prone to buckling instability, which we quantify based on the
anisotropy of the stellar velocity dispersion. The actual buckling event is
observable at z~0.1, resulting in the formation of a boxy-peanut bulge clearly
discernible in the edge-on view of the galaxy at z=0. The bar in ErisBH does
not dissolve during the formation of the bulge but remains strongly
non-axisymmetric down to the resolution limit of ~100 pc at z=0. During its
early growth, the bar exerts a strong torque on the gas within its extent and
drives gas inflows that enhance the nuclear star formation on sub-kpc scales.
Later on the infalling gas is nearly all consumed into stars and, to a lesser
extent, accreted onto the central black hole, leaving behind a gas-depleted
region within the central ~2 kpc. Observations would more likely identify a
prominent, large-scale bar at the stage when the galactic central region has
already been quenched. Bar-driven quenching may play an important role in
disk-dominated galaxies at all redshift. [Abridged]Comment: 13 pages, 12 figures, MNRAS submitte
The high-redshift formation and evolution of Super-Massive Black Holes through semi-analytic models and photometric data
La formación y evolución de los Agujeros Negros Supermasivos (SMBHs) en el Universo temprano (z>6) representa una de las cuestiones abiertas más enigmáticas de la Astrofísica moderna. De hecho, una creciente cantidad de evidencias observacionales apunta a la existencia de BHs de mil millones de masas solares a tan sólo 1Gyr del BigBang, impulsando cuásares extremadamente luminosos (QSOs). A pesar de los intensos esfuerzos teóricos de la última década, los modelos actuales siguen teniendo dificultades para encajar la formación de estos objetos extremos en un tiempo cosmológico tan corto. Además, aún no está claro cómo se relacionan estos SMBHs de alto z con la población más común de SMBHs de desplazamiento al rojo inferior, que se cree que está alojada de forma ubicua en los núcleos de las galaxias masivas. Explicar la formación y el crecimiento de una población global de SMBHs en su contexto cosmológico presenta dificultades teóricas extremas que surgen de la necesidad de orquestar la física a pequeña escala del enfriamiento del gas, la formación de estrellas y su retroalimentación radiativa y química sobre el gas primordial, con la formación y evolución de la estructura a gran escala. Desde el punto de vista numérico, la formación de los SMBHs se estudia generalmente mediante simulaciones de alta resolución a pequeña escala que pueden captar eficazmente la física a pequeña escala implicada en este proceso. Sin embargo, la aplicación de estos resultados a cajas simuladas amplias y cosmológicas es computacionalmente prohibitiva, por lo que la generalización de estos resultados a escalas cosmológicas es aún incierta. Desde el punto de vista de la observación, los experimentos actuales y futuros están proporcionando mejores restricciones sobre la evolución cosmológica de la población de SMBHs a lo largo de la historia cósmica. En particular, los estudios espectroscópicos extensos y los estudios fotométricos de banda estrecha de área amplia ofrecen una visión complementaria de la población de núcleos galácticos activos luminosos (AGN) y QSO, lo que permite restringir los modelos teóricos para la formación y el crecimiento de los SMBHs. Esta tesis presenta un enfoque novedoso que aborda este complejo fenómeno mediante una combinación de métodos numéricos y técnicas observacionales. Más detalladamente, incrustamos un modelo completo para la formación y el crecimiento de los SMBHs en el modelo semi-analítico (SAM) L-Galaxies. A continuación, aplicamos nuestras prescripciones a los árboles de fusión de la simulación N-Body Millennium-II, que ofrece un compromiso óptimo entre la resolución de masa y el volumen simulado. Esto permite estudiar la ocurrencia de la formación de SMBHs a través de todos los procesos físicos actualmente previstos, así como seguir de forma autoconsistente la evolución de los SMBHs dentro de su contexto cosmológico. Por lo tanto, esto representa uno de los primeros intentos de modelar de forma autoconsistente la evolución de una población cosmológica de SMBHs, emergiendo sólo de procesos de formación de alto z. Complementamos este enfoque teórico con un estudio observacional de la función de luminosidad Lyman-alfa (LF) de los AGN/QSOs a 2 6) que conducen a la formación de SMBHs pueden explicar activamente tanto la formación de objetos extremadamente masivos y QSOs después de 1 Gyr desde el BigBang, como la acumulación cosmológica de la población global de SMBHs observada a desplazamientos al rojo más moderados (2 <br /
On merger bias and the clustering of quasars
We use the large catalogues of haloes available for the Millennium Simulation
to test whether recently merged haloes exhibit stronger large-scale clustering
than other haloes of the same mass. This effect could help to understand the
very strong clustering of quasars at high redshift. However, we find no
statistically significant excess bias for recently merged haloes over the
redshift range 2 < z < 5, with the most massive haloes showing an excess of at
most ~5%. We also consider galaxies extracted from a semianalytic model built
on the Millennium Simulation. At fixed stellar mass, we find an excess bias of
~ 20-30% for recently merged objects, decreasing with increasing stellar mass.
The fact that recently-merged galaxies are found in systematically more massive
haloes than other galaxies of the same stellar mass accounts for about half of
this signal, and perhaps more for high-mass galaxies. The weak merger bias of
massive systems suggests that objects of merger-driven nature, such as quasars,
do not cluster significantly differently than other objects of the same
characteristic mass. We discuss the implications of these results for the
interpretation of clustering data with respect to quasar duty cycles,
visibility times, and evolution in the black hole-host mass relation.Comment: 10 pages, 9 figures. Submitted to MNRAS. Comments welcom
- …
