1,041 research outputs found
Searching the Higgs with the Neurochip TOTEM
We show that neural network classifiers can be helpful in discriminating
Higgs production events from the huge background at LHC, assuming the case of a
mass value GeV. We use the high performance neurochip TOTEM,
trained by the Reactive Tabu Search algorithm (RTS), which could be used for
on-line purposes. Two different sets of input variables are compared.Comment: 4 pages,1 figure, requres espcrc2.sty and epsfig.sty. Work prsented
in The 5th Topical Seminar on ``The irresistible rise of the Standard
Model'', San Miniato, Tuscany, Italy, April 21-25 199
Hierarchical progressive surveys. Multi-resolution HEALPix data structures for astronomical images, catalogues, and 3-dimensional data cubes
Scientific exploitation of the ever increasing volumes of astronomical data
requires efficient and practical methods for data access, visualisation, and
analysis. Hierarchical sky tessellation techniques enable a multi-resolution
approach to organising data on angular scales from the full sky down to the
individual image pixels. Aims. We aim to show that the Hierarchical progressive
survey (HiPS) scheme for describing astronomical images, source catalogues, and
three-dimensional data cubes is a practical solution to managing large volumes
of heterogeneous data and that it enables a new level of scientific
interoperability across large collections of data of these different data
types. Methods. HiPS uses the HEALPix tessellation of the sphere to define a
hierarchical tile and pixel structure to describe and organise astronomical
data. HiPS is designed to conserve the scientific properties of the data
alongside both visualisation considerations and emphasis on the ease of
implementation. We describe the development of HiPS to manage a large number of
diverse image surveys, as well as the extension of hierarchical image systems
to cube and catalogue data. We demonstrate the interoperability of HiPS and
Multi-Order Coverage (MOC) maps and highlight the HiPS mechanism to provide
links to the original data. Results. Hierarchical progressive surveys have been
generated by various data centres and groups for ~200 data collections
including many wide area sky surveys, and archives of pointed observations.
These can be accessed and visualised in Aladin, Aladin Lite, and other
applications. HiPS provides a basis for further innovations in the use of
hierarchical data structures to facilitate the description and statistical
analysis of large astronomical data sets.Comment: 21 pages, 6 figures. Accepted for publication in Astronomy &
Astrophysic
Reviewing the Carbonation Resistance of Concrete
The paper reviews the studies on one of the important durability properties of concrete i.e. Carbonation. One of the main causes of deterioration of concrete is carbonation, which occurs when carbon dioxide (CO2) penetrates the concreteâs porous system to create an environment with lower pH around the reinforcement in which corrosion can proceed. Carbonation is a major cause of degradation of concrete structures leading to expensive maintenance and conservation operations. Herein, the importance, process and effect of various parameters such as water/cement ratio, water/binder ratio, curing conditions, concrete cover, super plasticizers, type of aggregates, grade of concrete, porosity, contaminants, compaction, gas permeability, supplementary cementitious materials (SCMs)/ admixtures on the carbonation of concrete has been reviewed. Various methods for estimating the carbonation depth are also reported briefl
Liberating Visions: Religion and the Challenge of Change in Maine,1820 to the Present
Liberating Visions: Religion and the Challenge of Change in Maine, 1820 to the Present. Each of the Sampson Centerâs three scholars has crafted an original essay related to one of the Sampson Center collectionsâAfrican-American, Judaic, and Lesbian, Gay, Bisexual, and Transgenderâthereby reflecting on how religious institutions have fostered minority identity and have framed social and cultural transformation.
Table of Contents:
Religion and Transformation (Joseph S. Wood, Provost and Vice President for Academic Affairs)
Jean Byers Sampson Center for Diversity in Maine Programming (Susie Bock, Director, Sampson Center for Diversity in Maine and Head, USM Special Collections)
The African American Collection âThereâs a Blessing in Pressing:â Change in Maineâs African American Churches (Maureen Elgersman Lee, Associate Professor of History and Faculty Scholar for USMâs African American Collection)
The Judaica Collection âOrthodox and Yet thoroughly Liberal:â Jews and Judaism in Maine Between Tradition and Change (Abraham J. Peck, Director, Academic Council for Post-Holocaust Christian, Jewish, and Islamic Studies and Scholar-in-residence for USMâs Judaica Collection)
The Lesbian, Gay, Bisexual, and Transgender Collection Coming Out, Going In: Spirituality and Religion in Maineâs LGBT Communities (Howard M. Solomon, Adjunct Professor of History and Scholar-in-Residence for USMâs LGBT Collection)https://digitalcommons.usm.maine.edu/event_catalog/1001/thumbnail.jp
Increased fibrosis in a mouse model of anti-laminin 332 mucous membrane pemphigoid remains unaltered by inhibition of aldehyde dehydrogenase
Mucous membrane pemphigoid (MMP) is an autoimmune blistering disease characterized by autoantibodies against the basal membrane zone of skin and surface-close epithelia and predominant mucosal lesions. The oral cavity and conjunctivae are most frequently affected, albeit clinical manifestations can also occur on the skin. MMP-associated lesions outside the oral cavity typically lead to scarring. Mechanisms underlying scarring are largely unknown in MMP and effective treatment options are limited. Herein, we assessed the collagen architecture in tissue samples of an antibody-transfer mouse model of anti-laminin-332 MMP. In MMP mice, increased collagen fibril density was observed in skin and conjunctival lesions compared to mice injected with normal rabbit IgG. The extracellular matrix of MMP skin samples also showed altered post-translational collagen cross-linking with increased levels of both lysine- and hydroxylysine-derived collagen crosslinks supporting the fibrotic phenotype in experimental MMP compared to control animals. In addition, we evaluated a potential anti-fibrotic therapy in experimental anti-laminin-332 MMP using disulfiram, an inhibitor of the aldehyde dehydrogenase (ALDH), which has been implicated in immune-mediated mucosal scarring. In addition, disulfiram also acts as a copper chelator that was shown to block lysyl oxidase activity, an enzyme involved in formation of collagen crosslinks. Topical use of disulfiram (300 ÎŒM in 2 [w/v] methocel) did not improve ocular lesions in experimental MMP over the 12-day treatment period in disulfiram-treated mice compared to vehicle-treated mice (n=8/group). Furthermore, C57BL6/J mice (n=8/group) were treated prophylactically with 200 mg/kg p.o. disulfiram or the solvent once daily over a period of 12 days. Systemic treatment did not show any reduction in the severity of oral and ocular lesions in MMP mice, albeit some improvement in skin lesions was observed in disulfiram- vs. vehicle-treated mice (p=0.052). No reduction in fibrosis was seen, as assessed by immunohistochemistry. Whilst blocking of ALDH failed to significantly ameliorate disease activity, our data provide new insight into fibrotic processes highlighting changes in the collagenous matrix and cross-linking patterns in IgG-mediated MMP
Assessing plant diversity and composition in grasslands across spatial scales: the standardised EDGG sampling methodology
This paper presents the details of the EDGG sampling methodology and its underlying rationales. The methodology has been applied during EDGG Research Expeditions and EDGG Field Workshops since 2009, and has been subsequently adopted by various other researchers. The core of the sampling are the EDGG Biodiversity Plots, which are 100âm2 squares comprising, in two opposite corners, nestedâplot series of 0.0001, 0.001, 0.01, 0.1, 1 and 10 m2 square plots, in which all terricolous vascular plants, bryophytes and lichens are recorded using the shoot presence method. In the 10âm2 plots, species cover is also estimated as a percentage and various environmental and structural parameters are recorded. Usually the EDGG Biodiversity Plots are complemented by the sampling of additional 10 m2 normal plots with the same parameters as the 10âm2 corners of the first, allowing coverage of a greater environmental diversity and the achievement of higher statistical power in the subsequent analyses for this important grain size. The EDGG sampling methodology has been refined over the years, while its core has turned out to generate highâquality, standardised data in an effective manner, which facilitates a multitude of analyses. In this paper we provide the current versions of our guidelines, field forms and data entry spreadsheets, as openâaccess Online Resources to facilitate the easy implementation of this methodology by other researchers. We also discuss potential future additions and modifications to the approach, among which the most promising are the use of stratifiedârandom methods to a priori localise the plots and ideas to sample invertebrate taxa on the same plots and grain sizes, such as grasshoppers (Orthoptera) and vegetationâdwelling spiders (Araneae). As with any other method, the EDGG sampling methodology is not ideal for every single purpose, but with its continuous improvements and its flexibility, it is a good multiâ purpose approach. A particularly advantageous element, lacking in most other sampling schemes, including classical phytosociogical sampling, is the multiâscale and multiâtaxon approach, which provides data that allow for deeper understanding of the generalities and idiosyncrasies of biodiversity patterns and their underlying drivers across scales and taxa
The whole and its parts : why and how to disentangle plant communities and synusiae in vegetation classification
Most plant communities consist of different structural and ecological subsets, ranging from cryptogams to different tree layers. The completeness and approach with which these subsets are sampled have implications for vegetation classification. Nonâvascular plants are often omitted or sometimes treated separately, referring to their assemblages as âsynusiaeâ (e.g. epiphytes on bark, saxicolous species on rocks). The distinction of complete plant communities (phytocoenoses or holocoenoses) from their parts (synusiae or merocoenoses) is crucial to avoid logical problems and inconsistencies of the resulting classification systems. We here describe theoretical differences between the phytocoenosis as a whole and its parts, and outline consequences of this distinction for practise and terminology in vegetation classification. To implement a clearer separation, we call for modifications of the International Code of Phytosociological Nomenclature and the EuroVegChecklist. We believe that these steps will make vegetation classification systems better applicable and raise the recognition of the importance of nonâvascular plants in the vegetation as well as their interplay with vascular plants
Programmable Sequence-Specific Transcriptional Regulation of Mammalian Genome Using Designer TAL Effectors
The ability to direct functional proteins to specific DNA sequences is a long-sought goal in the study and engineering of biological processes. Transcription activatorâlike effectors (TALEs) from Xanthomonas sp. are site-specific DNA-binding proteins that can be readily designed to target new sequences. Because TALEs contain a large number of repeat domains, it can be difficult to synthesize new variants. Here we describe a method that overcomes this problem. We leverage codon degeneracy and type IIs restriction enzymes to generate orthogonal ligation linkers between individual repeat monomers, thus allowing full-length, customized, repeat domains to be constructed by hierarchical ligation. We synthesized 17 TALEs that are customized to recognize specific DNA-binding sites, and demonstrate that they can specifically modulate transcription of endogenous genes (SOX2 and KLF4) in human cells.Harvard University. Society of FellowsNational Human Genome Research Institute (U.S.) (Center for Excellence in Genomics Science P50 HG003170)United States. Dept. of Energy (Genomes to Life DE-FG02-02ER63445)United States. Defense Advanced Research Projects Agency (W911NF-08-1-0254, G.M.C.)Wyss Institute of Biologically Inspired EngineeringNational Institutes of Health (U.S.) (Transformative R01 (R01 NS073124-01))European School of Molecular Medicine (predoctoral fellowship
Does plant diversity affect the water balance of established grassland systems like in manipulative biodiversity experiments?
Land-use intensification and biodiversity loss are known drivers of the water cycle but their interactions are unclear. We investigated how evapotranspiration (ETa), downward water flux (DF), and capillary rise (CR) in topsoil and subsoil are related to land-use and plant diversity in established, commercially managed grassland and compared these results to findings from an experiment in which plant diversity was manipulated.
In three Central European regions (âBiodiversity Exploratoriesâ), we studied 29 grassland plots (50 m x 50 m; 9-11 plots per region). Land-use intensity increases in the order, pasture < mown pasture < meadow. In 2010-2015, we measured soil moisture, meteorological conditions, plant species richness, number of species in the functional groups of grasses, herbs, and legumes, and root biomass. ETa, DF, and CR were calculated for two soil layers with a soil water balance model. Land-use and biodiversity effects on water fluxes were analyzed with repeated-measures analysis of variance.
Land-use intensity did not affect water fluxes. Species richness did not influence DF and CR. ETa from topsoil decreased with increasing species richness while ETa from subsoil increased. Opposing effects on ETa in the two soil layers were also observed for the number of herbs and legumes. In manipulative biodiversity experiments, such opposing effects were explained by higher biomass in species-rich mixtures, which increases shading of topsoil and reduces evaporation. In subsoil, deeper roots in species-rich mixtures increased transpiration. In the commercially managed grasslands, biomass and species richness correlated negatively because fertilizer application increased biomass and decreased species richness. Thus, similar effects of biodiversity on water fluxes in commercially managed and experimentally manipulated grassland had different reasons. We speculate that improved infiltration and enhanced bioturbation in species-rich grassland explained our observations
- âŠ