173 research outputs found

    From Structure to Function in Open Ionic Channels

    Full text link
    We consider a simple working hypothesis that all permeation properties of open ionic channels can be predicted by understanding electrodiffusion in fixed structures, without invoking conformation changes, or changes in chemical bonds. We know, of course, that ions can bind to specific protein structures, and that this binding is not easily described by the traditional electrostatic equations of physics textbooks, that describe average electric fields, the so-called `mean field'. The question is which specific properties can be explained just by mean field electrostatics and which cannot. I believe the best way to uncover the specific chemical properties of channels is to invoke them as little as possible, seeking to explain with mean field electrostatics first. Then, when phenomena appear that cannot be described that way, by the mean field alone, we turn to chemically specific explanations, seeking the appropriate tools (of electrochemistry, Langevin, or molecular dynamics, for example) to understand them. In this spirit, we turn now to the structure of open ionic channels, apply the laws of electrodiffusion to them, and see how many of their properties we can predict just that way.Comment: Nearly final version of publicatio

    Asking Biological Questions of Physical Systems: the Device Approach to Emergent Properties

    Full text link
    Life occurs in concentrated `Ringer Solutions' derived from seawater that Lesser Blum studied for most of his life. As we worked together, Lesser and I realized that the questions asked of those solutions were quite different in biology from those in the physical chemistry he knew. Biology is inherited. Information is passed by handfuls of atoms in the genetic code. A few atoms in the proteins built from the code change macroscopic function. Indeed, a few atoms often control biological function in the same sense that a gas pedal controls the speed of a car. Biological questions then are most productive when they are asked in the context of evolution. What function does a system perform? How is the system built to perform that function? What forces are used to perform that function? How are the modules that perform functions connected to make the machinery of life. Physiologists have shown that much of life is a nested hierarchy of devices, one on top of another, linking atomic ions in concentrated solutions to current flow through proteins, current flow to voltage signals, voltage signals to changes in current flow, all connected to make a regenerative system that allows electrical action potentials to move meters, under the control of a few atoms. The hierarchy of devices allows macroscopic properties to emerge from atomic scale interactions. The structures of biology create these devices. The concentration and electrical fields of biology power these devices, more than anything else. The resulting organisms reproduce. Evolution selects the organisms that reproduce more and thereby selects the devices that allow macroscopic control to emerge from the atomic structures of genes and proteins and their motions.Comment: Journal of Molecular Liquids, in the press, January 16, 2018, Article Reference MOLLIQ854
    • …
    corecore