101 research outputs found
What are the left-handed media and what is interesting about them?
We review the intensively discussed ideas about wave propagation and
refraction in media where both electric permittivity and magnetic permeability
are negative. The criticism against negative refraction as violating the
causality principle is considered. Starting from the initial wave equations,
refraction of beams at the boundary of a left-handed medium is analyzed. The
physics of a perfect lens formed by a flat layer of a left-handed material is
considered.Comment: 21 pages, 8 figure
Localization of transverse waves in randomly layered media at oblique incidence
We investigate the oblique incidence of transverse waves on a randomly
layered medium in the limit of strong disorder. An approximate method for
calculating the inverse localization length based on the assumptions of zero
energy flux and complete phase stochastization is presented. Two effects not
found at normal incidence have been studied: dependence of the localization
length on the polarization, and decrease of the localization length due to the
internal reflections from layers with small refractive indexes. The inverse
localization length (attenuation rate) for P-polarized radiation is shown to be
always smaller than that of S-waves, which is to say that long enough randomly
layered sample polarizes transmitted radiation. The localization length for
P-polarization depends non-monotonically on the angle of propagation, and under
certain conditions turns to infinity at some angle, which means that typical
(non-resonant) random realizations become transparent at this angle of
incidence (stochastic Brewster effect).Comment: 12 pages, 1 figure, accepted for publication in Physical Review
Resonances in 1D disordered systems: localization of energy and resonant transmission
Localized states in one-dimensional open disordered systems and their
connection to the internal structure of random samples have been studied. It is
shown that the localization of energy and anomalously high transmission
associated with these states are due to the existence inside the sample of a
transparent (for a given resonant frequency) segment with the minimal size of
order of the localization length. A mapping of the stochastic scattering
problem in hand onto a deterministic quantum problem is developed. It is shown
that there is no one-to-one correspondence between the localization and high
transparency: only small part of localized modes provides the transmission
coefficient close to one. The maximal transmission is provided by the modes
that are localized in the center, while the highest energy concentration takes
place in cavities shifted towards the input. An algorithm is proposed to
estimate the position of an effective resonant cavity and its pumping rate by
measuring the resonant transmission coefficient. The validity of the analytical
results have been checked by extensive numerical simulations and wavelet
analysis
- …