43 research outputs found

    Electro-kinetically enhanced nano-metric material removal

    Get PDF
    This project is a fundamental proof of concept to look at the feasibility of using field activated abrasive particles to achieve material removal on a substrate. There are a few different goals for this project. The first goal is to prove through visualization that particle movement can be influenced and controlled by changes in electric field. The second goal is to fundamentally prove that particles controlled by electric field can remove material from a substrate. Third, it should be shown that changes in electric field can control the amount of material being removed in a given amount of time. A mathematical model will be presented which predicts metallic material removal rates based on changes in electric field strength. In this project, a technique combining concepts from electrokinetics, electrochemical mechanical planarization, and contact mechanics is proposed, aiming at enhancing planarization performance. By introducing an AC electric field with a DC offset, we try to achieve not only a better control of metallic material removal but also more flexible manipulation of the dynamic behaviour of abrasive particles. The presence of electric field will lead to electrokinetic phenomena including electroosmotic flow of an electrolyte solution and electrophoretic motion of abrasive particles. As a result, we aim to improve both the mechanical performance of planarization that is largely determined by the polishing parameters (e.g. down pressure, rotation speed, pads, and types of abrasives) and the chemical performance of planarization that is governed by selective and collective reactions of different chemical ingrediants of the slurry with the sample surface. The aim is also to understand and improve the interactions of abrasive particles with the sample.M.S.Committee Chair: Danyluk, Steven; Committee Member: Butler, David; Committee Member: Hesketh, Peter; Committee Member: Yoda, Minam

    Spatial Sorting Drives Morphological Variation in the Invasive Bird, Acridotheris tristis

    Get PDF
    The speed of range expansion in many invasive species is often accelerating because individuals with stronger dispersal abilities are more likely to be found at the range front. This ‘spatial sorting’ of strong dispersers will drive the acceleration of range expansion. In this study, we test whether the process of spatial sorting is at work in an invasive bird population (Common myna, Acridotheris tristis) in South Africa. Specifically, we sampled individuals across its invasive range and compared morphometric measurements relevant and non-relevant to the dispersal ability. Besides testing for signals of spatial sorting, we further examined the effect of environmental factors on morphological variations. Our results showed that dispersal-relevant traits are significantly correlated with distance from the range core, with strong sexual dimorphism, indicative of sex-biased dispersal. Morphological variations were significant in wing and head traits of females, suggesting females as the primary dispersing sex. In contrast, traits not related to dispersal such as those associated with foraging showed no signs of spatial sorting but were significantly affected by environmental variables such as the vegetation and the intensity of urbanisation. When taken together, our results support the role of spatial sorting in facilitating the expansion of Common myna in South Africa despite its low propensity to disperse in the native range

    The US Program in Ground-Based Gravitational Wave Science: Contribution from the LIGO Laboratory

    Get PDF
    Recent gravitational-wave observations from the LIGO and Virgo observatories have brought a sense of great excitement to scientists and citizens the world over. Since September 2015,10 binary black hole coalescences and one binary neutron star coalescence have been observed. They have provided remarkable, revolutionary insight into the "gravitational Universe" and have greatly extended the field of multi-messenger astronomy. At present, Advanced LIGO can see binary black hole coalescences out to redshift 0.6 and binary neutron star coalescences to redshift 0.05. This probes only a very small fraction of the volume of the observable Universe. However, current technologies can be extended to construct "3rd Generation" (3G) gravitational-wave observatories that would extend our reach to the very edge of the observable Universe. The event rates over such a large volume would be in the hundreds of thousands per year (i.e. tens per hour). Such 3G detectors would have a 10-fold improvement in strain sensitivity over the current generation of instruments, yielding signal-to-noise ratios of 1000 for events like those already seen. Several concepts are being studied for which engineering studies and reliable cost estimates will be developed in the next 5 years

    Global urban environmental change drives adaptation in white clover

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider