27,085 research outputs found
Interpolation in Wavelet Spaces and the HRT-Conjecture
We investigate the wavelet spaces arising from square integrable representations of a locally compact group . We show that
the wavelet spaces are rigid in the sense that non-trivial intersection between
them imposes strong conditions. Moreover, we use this to derive consequences
for wavelet transforms related to convexity and functions of positive type.
Motivated by the reproducing kernel Hilbert space structure of wavelet spaces
we examine an interpolation problem. In the setting of time-frequency analysis,
this problem turns out to be equivalent to the HRT-Conjecture. Finally, we
consider the problem of whether all the wavelet spaces
of a locally compact group
collectively exhaust the ambient space . We show that the answer is
affirmative for compact groups, while negative for the reduced Heisenberg
group.Comment: Added a relevant citation and made minor modifications to the
expositio
- …