310 research outputs found
Understanding The Effects Of Stellar Multiplicity On The Derived Planet Radii From Transit Surveys: Implications for Kepler, K2, and TESS
We present a study on the effect of undetected stellar companions on the
derived planetary radii for the Kepler Objects of Interest (KOIs). The current
production of the KOI list assumes that the each KOI is a single star. Not
accounting for stellar multiplicity statistically biases the planets towards
smaller radii. The bias towards smaller radii depends on the properties of the
companion stars and whether the planets orbit the primary or the companion
stars. Defining a planetary radius correction factor , we find that if the
KOIs are assumed to be single, then, {\it on average}, the planetary radii may
be underestimated by a factor of . If typical
radial velocity and high resolution imaging observations are performed and no
companions are detected, this factor reduces to . The correction factor is dependent upon the primary
star properties and ranges from for A and F
stars to for K and M stars. For missions like
K2 and TESS where the stars may be closer than the stars in the Kepler target
sample, observational vetting (primary imaging) reduces the radius correction
factor to . Finally, we show that if the
stellar multiplicity rates are not accounted for correctly, occurrence rate
calculations for Earth-sized planets may overestimate the frequency of small
planets by as much as \%.Comment: 10 pages, 6 Figures, Accepted for publication in The Astrophysical
Journal (Fix typo in Equation 6 of original astroph submission; correction
also submitted to Journal
A White Paper Submitted to The National Academy of Science's Committee on Exoplanet Science Strategy: Observing Exoplanets with the James Webb Space Telescope
The James Webb Space Telescope (JWST) will revolutionize our understanding of exoplanets with transit spectroscopy of a wide range of mature planets close to their host stars (10 AU). The census of exoplanets has revealed an enormous variety of planets orbiting stars of all ages and spectral types. With TESS adding to this census with its all-sky survey of the closest, brightest stars, the challenge of the coming decade will be to move from demography to physical characterization. This white paper discusses the wide variety of exoplanet opportunities enabled by JWST's sensitivity and stability, its high angular resolution, and its suite of powerful instruments. JWST observations will advance our understanding of the atmospheres of young to mature planets and will provide new insights into planet formation
The Contribution of Ionizing Stars to the Far-Infrared and Radio Emission in the Galaxy
This is the first report of a new contract. However, this project represents ongoing work, so there are completed tasks as well as newly started tasks to report. The project involves the completion of the IRAS Galaxy Atlas (IGA), a large image database produced using data from the Infrared Astronomical Satellite (IRAS). In this phase, the project switches from the production and characterization of the IGA to its use in astronomical research studies of massive star formation. The research utilizes the IGA as well as two other large data sets being produced by research partners
Locating Planetesimal Belts in the Multiple-planet Systems HD 128311, HD 202206, HD 82943, and HR 8799
In addition to the Sun, six other stars are known to harbor multiple planets and debris disks: HD 69830, HD 38529, HD 128311, HD 202206, HD 82943, and HR 8799. In this paper, we set constraints on the location of the dust-producing planetesimals around the latter four systems. We use a radiative transfer model to analyze the spectral energy distributions of the dust disks (including two new Spitzer IRS spectra presented in this paper), and a dynamical model to assess the long-term stability of the planetesimals' orbits. As members of a small group of stars that show evidence of harboring a multiple planets and planetesimals, their study can help us learn about the diversity of planetary systems
OGLE-2018-BLG-0022: First Prediction of an Astrometric Microlensing Signal from a Photometric Microlensing Event
In this work, we present the analysis of the binary microlensing event OGLE-2018-BLG-0022 that is detected toward the Galactic bulge field. The dense and continuous coverage with the high-quality photometry data from ground-based observations combined with the space-based Spitzer observations of this long timescale event enables us to uniquely determine the masses M_1 = 0.40 ± 0.05 M⊙ and M_2 = 0.13 ± 0.01 M⊙ of the individual lens components. Because the lens-source relative parallax and the vector lens-source relative proper motion are unambiguously determined, we can likewise unambiguously predict the astrometric offset between the light centroid of the magnified images (as observed by the Gaia satellite) and the true position of the source. This prediction can be tested when the individual-epoch Gaia astrometric measurements are released
A Distant Stellar Companion in the Upsilon Andromedae System
Upsilon Andromedae is an F8V star known to have an extrasolar system of at
least 3 planets in orbit around it. Here we report the discovery of a low-mass
stellar companion to this system. The companion shares common proper motion,
lies at a projected separation of ~750 AU, and has a spectral type of M4.5V.
The effect of this star on the radial velocity of the brighter primary is
negligible, but this system provides an interesting testbed for stellar
planetary formation theory and understanding dynamical stability since it is
the first multiple planetary system known in a multiple stellar system.Comment: 4 pages, 2 figures, to be published in June ApJ Letter
- …