8 research outputs found

    Focusing light through dynamical samples using fast closed-loop wavefront optimization

    No full text
    We describe a fast closed-loop optimization wavefront shaping system able to focus light through dynamic scattering media. A MEMS-based spatial light modulator (SLM), a fast photodetector and FPGA electronics are combined to implement a closed-loop optimization of a wavefront with a single mode optimization rate of 4.1 kHz. The system performances are demonstrated by focusing light through colloidal solutions of TiO2 particles in glycerol with tunable temporal stability

    Non-invasive light focusing in scattering media using speckle variance optimization

    No full text
    Optical imaging deep inside scattering media remains a fundamental problem in bio-imaging. While wavefront shaping has been shown to allow focusing of coherent light at depth, achieving it non-invasively remains a challenge. Various feedback mechanisms, in particular acoustic or non-linear fluorescence-based, have been put forward for this purpose. Non-invasive focusing at depth on fluorescent objects with linear excitation is, however, still unresolved. Here we report a simple method for focusing inside a scattering medium in an epi-detection geometry with a linear signal: optimizing the spatial variance of low contrast speckle patterns emitted by a set of fluorescent sources. Experimentally, we demonstrate robust and efficient focusing of scattered light on a single source, and show that this variance optimization method is formally equivalent to previous optimization strategies based on two-photon fluorescence. Our technique should generalize to a large variety of incoherent contrast mechanisms and holds interesting prospects for deep bio-imaging

    Enhanced stability of the focus obtained by wavefront optimization in dynamical scattering media

    No full text
    Focusing scattered light using wavefront shaping provides interesting perspectives to image deep in opaque samples, as e.g. in nonlinear fluorescence microscopy. Applying these technics to in vivo imaging remains challenging due to the short decorrelation time of the speckle in depth, as focusing and imaging has to be achieved within the order of the decorrelation time. In this paper, we experimentally study the focus lifetime after focusing through dynamical scattering media, when iterative wavefront optimization and speckle decorrelation occur over the same timescale. We show experimental situations with heterogeneous stability of the scattering sequences, where the focus presents significantly higher stability than the surrounding speckle

    Supplement 1: Transmission-matrix-based point-spread-function engineering through a complex medium

    No full text
    Quantitative characterization of the generation of a Bessel-like beam. Originally published in Optica on 20 January 2017 (optica-4-1-54

    Single-shot Digital Optical Fluorescence Phase Conjugation Through Forward Multiply Scattering Samples

    No full text
    Aberrations and multiple scattering in biological tissues critically distort light beams into highly complex speckle patterns. In this regard, digital optical phase conjugation (DOPC) is a promising technique enabling in-depth focusing. However, DOPC becomes challenging when using fluorescent guide-stars for four main reasons: The low photon budget available, the large spectral bandwidth of the fluorescent signal, the Stokes shift between the emission and the excitation wavelength, and the absence of reference beam preventing holographic measurement. Here, we demonstrate the possibility to focus a laser beam through multiple-scattering samples by measuring speckle fields in a single acquisition step with a reference-free and high-resolution wavefront sensor. By taking advantage of the large spectral bandwidth of forward multiply scattering samples, Digital Fluorescence Phase Conjugation (DFPC) is achieved to focus a laser beam at the excitation wavelength while measuring the broadband speckle field arising from a micron-sized fluorescent bead

    Spectrally-resolved point-spread-function engineering using a complex medium

    No full text
    Propagation of an ultrashort pulse of light through strongly scattering media generates an intricate spatio-spectral speckle that can be described by means of the multi-spectral transmission matrix (MSTM). In conjunction with a spatial light modulator, the MSTM enables the manipulation of the pulse leaving the medium; in particular focusing it at any desired spatial position and/or time. Here, we demonstrate how to engineer the point-spread-function of the focused beam both spatially and spectrally, from the measured MSTM. It consists in numerically filtering the spatial content at each wavelength of the matrix prior to focusing. We experimentally report on the versatility of the technique through several examples, in particular as an alternative to simultaneous spatial and temporal focusing, with potential applications in multiphoton microscopy
    corecore