134 research outputs found
Report on Long-Term Impacts (STEP program)
P/PV's Summer Training and Education Program (STEP) model was designed to target those who were most likely to drop out -- 14- and 15-year-olds who were economically and academically disadvantaged. Our previous evaluations found significant short-term improvements in reading, math and sexual responsibility knowledge for the treatment group compared with the control group. This report, which presents postprogram impacts of STEP participation on the youth's educational achievements, sexual behavior and economic conditions, finds no evidence to suggest that the short-term STEP intervention had long-term impacts. The report does, however, present a clear picture of how the behaviors of these youth evolve, which may help inform future policies and programs targeted at this population
Genomic organization and classification of the bovine WC1 genes and expression by peripheral blood gamma delta T cells
Background: WC1 co-receptors are group B scavenger receptor cysteine-rich molecules that are found exclusively on γδT cells and are thought to be encoded by a multi-gene family. Previous studies have shown γδT cells that respond to a particular stimulus have unique WC1 molecules expressed. Prior to the onset of the studies described here only one full-length WC1 nucleotide sequence was publicly available, though three WC1 molecules had been distinguished based on monoclonal antibody reactivity. Furthermore, the number of WC1 genes found in the bovine genome and their sequences had not yet been resolved. Results: By annotating the bovine genome Btau_3.1 assembly, here we show the existence of 13 members in the WC1 gene family and their organization within two loci on chromosome 5 including three distinct exon-intron gene structures one of which coded for a potentially more primitive and smaller WC1 molecule that is similar to the swine WC1 gene. We also provide cDNA evidence as verification for many of the annotated sequences and show transcripts for isoforms derived by alternative splicing. Conclusion: It is possible that WC1 diversity contributes to functional differences that have been observed between γδT cell populations. The studies described here demonstrate that WC1 molecules are encoded by a large, multi-gene family whose transcripts undergo extensive alternative splicing. Similar to other non-rearranging immunoreceptors, it is likely that the WC1 gene repertoire underwent expansion in order to keep pace with rapidly changing ligands
Annotation and classification of the bovine T cell receptor delta genes
Abstract Background: gδ T cells differ from ab T cells with regard to the types of antigen with which their T cell receptors interact; gδ T cell antigens are not necessarily peptides nor are they presented on MHC. Cattle are considered a “gδ T cell high” species indicating they have an increased proportion of gδ T cells in circulation relative to that in “gδ T cell low” species such as humans and mice. Prior to the onset of the studies described here, there was limited information regarding the genes that code for the T cell receptor delta chains of this gδ T cell high species. Results: By annotating the bovine (Bos taurus) genome Btau_3.1 assembly the presence of 56 distinct T cell receptor delta (TRD) variable (V) genes were found, 52 of which belong to the TRDV1 subgroup and were comingled with the T cell receptor alpha variable (TRAV) genes. In addition, two genes belonging to the TRDV2 subgroup and single TRDV3 and TRDV4 genes were found. We confirmed the presence of five diversity (D) genes, three junctional (J) genes and a single constant (C) gene and describe the organization of the TRD locus. The TRDV4 gene is found downstream of the C gene and in an inverted orientation of transcription, consistent with its orthologs in humans and mice. cDNA evidence was assessed to validate expression of the variable genes and showed that one to five D genes could be incorporated into a single transcript. Finally, we grouped the bovine and ovine TRDV1 genes into sets based on their relatedness. Conclusions: The bovine genome contains a large and diverse repertoire of TRD genes when compared to the genomes of “gδ T cell low” species. This suggests that in cattle gδ T cells play a more important role in immune function since they would be predicted to bind a greater variety of antigens
Evolution of the CD163 family and its relationship to the bovine gamma delta T cell co-receptor WC1
Background: The scavenger receptor cysteine rich (SRCR) domain is an ancient and conserved protein domain. CD163 and WC1 molecules are classed together as group B SRCR superfamily members, along with Spα, CD5 and CD6, all of which are expressed by immune system cells. There are three known types of CD163 molecules in mammals, CD163A (M130, coded for by CD163), CD163b (M160, coded for by CD163L1) and CD163c-α (CD163L1 or SCART), while their nearest relative, WC1, is encoded by a multigene family so far identified in the artiodactyl species of cattle, sheep, and pigs. Results: We annotated the bovine genome and identified genes coding for bovine CD163A and CD163c-α but found no evidence for CD163b. Bovine CD163A is widely expressed in immune cells, whereas CD163c-α transcripts are enriched in the WC1+ γδ T cell population. Phylogenetic analyses of the CD163 family genes and WC1 showed that CD163c-α is most closely related to WC1 and that chicken and platypus have WC1 orthologous genes, previously classified as among their CD163 genes. Conclusion: Since it has been shown that WC1 plays an important role in the regulation of γδ T cell responses in cattle, which, like chickens, have a high percentage of γδ T cells in their peripheral blood, CD163c-α may play a similar role, especially in species lacking WC1 genes. Our results suggest that gene duplications resulted in the expansion of CD163c-α-like and WC1-like molecules. This expanded repertoire was retained by species known as γδ T cell high , but homologous SRCR molecules were maintained by all mammals
Recommended from our members
Gamma Delta TCR and the WC1 Co-Receptor Interactions in Response to Leptospira Using Imaging Flow Cytometry and STORM
The WC1 cell surface family of molecules function as hybrid gamma delta (gamma delta) TCR co-receptors, augmenting cellular responses when cross-linked with the TCR, and as pattern recognition receptors, binding pathogens. It is known that following activation, key tyrosines are phosphorylated in the intracytoplasmic domains of WC1 molecules and that the cells fail to respond when WC1 is knocked down or, as shown here, when physically separated from the TCR. Based on these results we hypothesized that the colocalization of WC1 and TCR will occur following cellular activation thereby allowing signaling to ensue. We evaluated the spatio-temporal dynamics of their interaction using imaging flow cytometry and stochastic optical reconstruction microscopy. We found that in quiescent gamma delta T cells both WC1 and TCR existed in separate and spatially stable protein domains (protein islands) but after activation using Leptospira, our model system, that they concatenated. The association between WC1 and TCR was close enough for fluorescence resonance energy transfer. Prior to concatenating with the WC1 co-receptor, gamma delta T cells had clustering of TCR-CD3 complexes and exclusion of CD45. gamma delta T cells may individually express more than one variant of the WC1 family of molecules and we found that individual WC1 variants are clustered in separate protein islands in quiescent cells. However, the islands containing different variants merged following cell activation and before merging with the TCR islands. While WC1 was previously shown to bind Leptospira in solution, here we showed that Leptospira bound WC1 proteins on the surface of gamma delta T cells and that this could be blocked by anti-WC1 antibodies. In conclusion, gamma delta TCR, WC1 and Leptospira interact directly on the gamma delta T cell surface, further supporting the role of WC1 in gamma delta T cell pathogen recognition and cellular activation
γδ TCRs Function as Innate-like Receptors in the Bovine γδ T Cell Response against Leptospira
Characterization of the domestic goat γδ T cell receptor gene loci and gene usage
Goats and cattle diverged 30 million years ago but retain similarities in immune system genes. Here, the caprine T cell receptor (TCR) gene loci and transcription of its genes were examined and compared to cattle. We annotated the TCR loci using an improved genome assembly (ARS1) of a highly homozygous San Clemente goat. This assembly has already proven useful for describing other immune system genes including antibody and leucocyte receptors. Both the TCRγ (TRG) and TCRδ (TRD) loci were similarly organized in goats as in cattle and the gene sequences were highly conserved. However, the number of genes varied slightly as a result of duplications and differences occurred in mutations resulting in pseudogenes. WC1+ γδ T cells in cattle have been shown to use TCRγ genes from only one of the six available cassettes. The structure of that Cγ gene product is unique and may be necessary to interact with WC1 for signal transduction following antigen ligation. Using RT-PCR and PacBio sequencing, we observed the same restriction for goat WC1+ γδ T cells. In contrast, caprine WC1+ and WC1− γδ T cell populations had a diverse TCRδ gene usage although the propensity for particular gene usage differed between the two cell populations. Noncanonical recombination signal sequences (RSS) largely correlated with restricted expression of TCRγ and δ genes. Finally, caprine γδ T cells were found to incorporate multiple TRD diversity gene sequences in a single transcript, an unusual feature among mammals but also previously observed in cattle
A Consensus Definitive Classification of Scavenger Receptors and Their Roles in Health and Disease
Scavenger receptors constitute a large family of proteins that are structurally diverse and participate in a wide range of biological functions. These receptors are expressed predominantly by myeloid cells and recognize a diverse variety of ligands including endogenous and modified host-derived molecules and microbial pathogens. There are currently eight classes of scavenger receptors, many of which have multiple names, leading to inconsistencies and confusion in the literature. To address this problem, a workshop was organized by theUnited StatesNational Institute of Allergy and Infectious Diseases, National Institutes of Health, to help develop a clear definition of scavenger receptors and a standardized nomenclature based on that definition. Fifteen experts in the scavenger receptor field attended the workshop and, after extensive discussion, reached a consensus regarding the definition of scavenger receptors and a proposed scavenger receptor nomenclature. Scavenger receptors were defined as cell surface receptors that typically bind multiple ligands and promote the removal of nonself or altered-self targets. They often function by mechanisms that include endocytosis, phagocytosis, adhesion, and signaling that ultimately lead to the elimination of degraded or harmful substances. Based on this definition, nomenclature and classification of these receptors into 10 classes were proposed. This classification was discussed at three national meetings and input from participants at these meetings was requested. The following manuscript is a consensus statement that combines the recommendations of the initial workshop and incorporates the input received from the participants at the three national meetings
- …