271 research outputs found
Interface between pest risk science and policy : the EPPO perspective
The European and Mediterranean Plant Protection Organisation (EPPO) is an intergovernmental organization responsible for cooperation in plant protection in the European and Mediterranean region. It provides global distribution maps of pests, and intends to identify the areas at risk from new and emerging pests, in the framework of Pest Risk Analyses. EPPO has developed a decision-support scheme for Pest Risk Analysis (DSS) and a computer program (CAPRA) to assist pest risk analysts in running the decisionsupport scheme. Dedicated rating guidance and a Climatic Suitability Risk Mapping Decision-Support Scheme have recently been developed to guide assessors in identifying the potential area of establishment of a pest. All these tools have been developed taking into account both pest risk science available and needs of policy makers. The use of these tools and of mapping software are undertaken within the framework of EPPO Pest Risk Analyses, as illustrated through the examples of Thaumatotibia leucotreta (Lepidoptera) and Apriona germari (Coleoptera)
Dragons in the Drawing Room: Chinese Embroideries in British Homes
Chinese embroideries have featured in British domestic interiors since at least the seventeenth century. However, Western imperial interests in China during the mid-nineteenth and early twentieth century created a particular set of meanings around Chinese material culture, especially a colonial form of nostalgia for pre-nineteenth century China, with its emperors and 'exotic' court etiquette. This article examines the use of Chinese satin-stitch embroideries in British homes between 1860 and 1949, and explores how a range of British identities was constructed through the ownership, manipulation and display of these luxury Chinese textiles
miR-34a-/- mice are susceptible to diet-induced obesity
Objective:
MicroRNA (miR)−34a regulates inflammatory pathways, and increased transcripts have been observed in serum and subcutaneous adipose of subjects who have obesity and type 2 diabetes. Therefore, the role of miR-34a in adipose tissue inflammation and lipid metabolism in murine diet-induced obesity was investigated.
Methods:
Wild-type (WT) and miR-34a−/− mice were fed chow or high-fat diet (HFD) for 24 weeks. WT and miR-34a−/− bone marrow-derived macrophages were cultured in vitro with macrophage colony-stimulating factor (M-CSF). Brown and white preadipocytes were cultured from the stromal vascular fraction (SVF) of intrascapular brown and epididymal white adipose tissue (eWAT), with rosiglitazone.
Results:
HFD-fed miR-34a−/− mice were significantly heavier with a greater increase in eWAT weight than WT. miR-34a−/− eWAT had a smaller adipocyte area, which significantly increased with HFD. miR-34a−/− eWAT showed basal increases in Cd36, Hmgcr, Lxrα, Pgc1α, and Fasn. miR-34a−/− intrascapular brown adipose tissue had basal reductions in c/ebpα and c/ebpβ, with in vitro miR-34a−/− white adipocytes showing increased lipid content. An F4/80high macrophage population was present in HFD miR-34a−/− eWAT, with increased IL-10 transcripts and serum IL-5 protein. Finally, miR-34a−/− bone marrow-derived macrophages showed an ablated CXCL1 response to tumor necrosis factor-α.
Conclusions:
These findings suggest a multifactorial role of miR-34a in controlling susceptibility to obesity, by regulating inflammatory and metabolic pathways
Surgical Management of Subchondral Cystic Lesions of the Medial Femoral Condyle with an Absorbable Implant
A transcortical extra-articular approach to facilitate curettage, irrigation, and placement of an absorbable implant to treat subchondral cystic lesions of the medial femoral bone condyle may be a useful surgical treatment option to improve lameness as well as the radiographic appearance of subchondral cystic lesions
In Situ Maleimide Bridging of Disulfides and a New Approach to Protein PEGylation
The introduction of non-natural entities into proteins by chemical modification has numerous applications in fundamental biological science and for the development and manipulation of peptide and protein therapeutics. The reduction of native disulfide bonds provides a convenient method to access two nucleophilic cysteine residues that can serve as ideal attachment points for such chemical modification. The optimum bioconjugation strategy utilizing these cysteine residues should include the reconstruction of a bridge to mimic the role of the disulfide bond, maintaining structure and stability of the protein. Furthermore, the bridging chemical modification should be as rapid as possible to prevent problems associated with protein unfolding, aggregation, or disulfide scrambling. This study reports on an in situ disulfide reduction-bridging strategy that ensures rapid sequestration of the free cysteine residues in a bridge, using dithiomaleimides. This approach is then used to PEGylate the peptide hormone somatostatin and retention of biological activity is demonstrated
The disruption of proteostasis in neurodegenerative diseases
Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio
First circumglobal assessment of Southern Hemisphere humpback whale mitochondrial genetic variation and implications for management
The description of genetic population structure over a species\u27 geographic range can provide insights into its evolutionary history and also support effective management efforts. Assessments for globally distributed species are rare, however, requiring significant international coordination and collaboration. The global distribution of demographically discrete populations for the humpback whale Megaptera novaeangliae is not fully known, hampering the definition of appropriate management units. Here, we present the first circumglobal assessment of mito - chondrial genetic population structure across the species\u27 range in the Southern Hemisphere and Arabian Sea. We combine new and existing data from the mitochondrial (mt)DNA control region that resulted in a 311 bp consensus sequence of the mtDNA control region for 3009 individuals sampled across 14 breeding stocks and subpopulations currently recognized by the International Whaling Commission. We assess genetic diversity and test for genetic differentiation and also estimate the magnitude and directionality of historic matrilineal gene flow between putative populations. Our results indicate that maternally directed site fidelity drives significant genetic population structure between breeding stocks within ocean basins. However, patterns of connectivity differ across the circumpolar range, possibly as a result of differences in the extent of longitudinal movements on feeding areas. The number of population comparisons observed to be significantly differentiated were found to diminish at the subpopulation scale when nucleotide differences were examined, indicating that more complex processes underlie genetic structure at this scale. It is crucial that these complexities and uncertainties are afforded greater consideration in management and regulatory efforts
Cyclodipeptide synthases, a family of class-I aminoacyl-tRNA synthetase-like enzymes involved in non-ribosomal peptide synthesis
Cyclodipeptide synthases (CDPSs) belong to a newly defined family of enzymes that use aminoacyl-tRNAs (aa-tRNAs) as substrates to synthesize the two peptide bonds of various cyclodipeptides, which are the precursors of many natural products with noteworthy biological activities. Here, we describe the crystal structure of AlbC, a CDPS from Streptomyces noursei. The AlbC structure consists of a monomer containing a Rossmann-fold domain. Strikingly, it is highly similar to the catalytic domain of class-I aminoacyl-tRNA synthetases (aaRSs), especially class-Ic TyrRSs and TrpRSs. AlbC contains a deep pocket, highly conserved among CDPSs. Site-directed mutagenesis studies indicate that this pocket accommodates the aminoacyl moiety of the aa-tRNA substrate in a way similar to that used by TyrRSs to recognize their tyrosine substrates. These studies also suggest that the tRNA moiety of the aa-tRNA interacts with AlbC via at least one patch of basic residues, which is conserved among CDPSs but not present in class-Ic aaRSs. AlbC catalyses its two-substrate reaction via a ping-pong mechanism with a covalent intermediate in which l-Phe is shown to be transferred from Phe-tRNAPhe to an active serine. These findings provide insight into the molecular bases of the interactions between CDPSs and their aa-tRNAs substrates, and the catalytic mechanism used by CDPSs to achieve the non-ribosomal synthesis of cyclodipeptides
Genomics and morphometry of herbarium specimens elucidate the origin of the Cape Verde date palm (Phoenix atlantica A.Chev.) and highlight its agronomic potential
Societal Impact Statement: As climate change accelerates, breeding resilient crops is urgent. The date palm (Phoenix dactylifera L.), a crucial 18 billion USD fruit crop, underpins North African and West Asian oasis agroecosystems. This study investigates the genetics and morphology of its closest wild relative, the endemic and endangered Cape Verde date palm (Phoenix atlantica A.Chev.). We reveal that the latter originated through a feralisation process from domesticated date palms, evolving back into a wild state with unique genetic diversity. This highlights the need to protect its distinctiveness and opens the possibility of enhancing date palm resilience through its inclusion in breeding programs. Summary: The date palm (Phoenix dactylifera L.). is a major crop but its sustainability is threatened by climate change. This challenge could be mitigated by breeding with wild relatives or feral populations. The endangered and endemic Cape Verde date palm (Phoenix atlantica A.Chev.) is thought to be among the closest relatives of the date palm, but its origin and taxonomic status remain unclear, with studies having recovered it either as a separate species or a feral date palm. Better understanding the differentiation of P. atlantica and P. dactylifera is needed to fully unlock the potential of the Cape Verde date palm as a candidate for date palm improvement. In this study, we employ an integrative approach to clarify the origin of P. atlantica. Specifically, we investigate the phylogenetic placement, genetic structure, and seed morphology of P. atlantica by generating extensive genomic and seed morphology datasets from expert-verified historical and modern specimens of Phoenix, including the type specimen of P. atlantica. Our findings indicate that P. atlantica is monophyletic but nested within P. dactylifera. Its genetic diversity overlaps substantially but not completely with North African date palm varieties, and its seeds share characteristics with those of cultivated and feral date palms, notably elongation, a trait linked to domestication. These results suggest that P. atlantica may be an incipient species that originated from a date palm feralisation event. We emphasise the need for conserving its natural genetic variation and the traditional knowledge associated with its name to support breeding programs
A prospective case–control and molecular epidemiological study of human cases of Shiga toxin-producing Escherichia coli in New Zealand
BACKGROUND: Shiga toxin-producing Escherichia coli (STEC) O157:H7 and related non-O157 STEC strains are enteric pathogens of public health concern worldwide, causing life-threatening diseases. Cattle are considered the principal hosts and have been shown to be a source of infection for both foodborne and environmental outbreaks in humans. The aims of this study were to investigate risk factors associated with sporadic STEC infections in humans in New Zealand and to provide epidemiological information about the source and exposure pathways. METHODS: During a national prospective case–control study from July 2011 to July 2012, any confirmed case of STEC infection notified to regional public health units, together with a random selection of controls intended to be representative of the national demography, were interviewed for risk factor evaluation. Isolates from each case were genotyped using pulsed-field gel electrophoresis (PFGE) and Shiga toxin-encoding bacteriophage insertion (SBI) typing. RESULTS: Questionnaire data from 113 eligible cases and 506 controls were analysed using multivariate logistic regression. Statistically significant animal and environmental risk factors for human STEC infections were identified, notably 'Cattle livestock present in meshblock’ (the smallest geographical unit) (odds ratio 1.89, 95% CI 1.04–3.42), 'Contact with animal manure’ (OR 2.09, 95% CI 1.12–3.90), and 'Contact with recreational waters’ (OR 2.95, 95% CI 1.30–6.70). No food-associated risk factors were identified as sources of STEC infection. E. coli O157:H7 caused 100/113 (88.5%) of clinical STEC infections in this study, and 97/100 isolates were available for molecular analysis. PFGE profiles of isolates revealed three distinctive clusters of genotypes, and these were strongly correlated with SBI type. The variable 'Island of residence’ (North or South Island of New Zealand) was significantly associated with PFGE genotype (p = 0.012). CONCLUSIONS: Our findings implicate environmental and animal contact, but not food, as significant exposure pathways for sporadic STEC infections in humans in New Zealand. Risk factors associated with beef and dairy cattle suggest that ruminants are the most important sources of STEC infection. Notably, outbreaks of STEC infections are rare in New Zealand and this further suggests that food is not a significant exposure pathway
- …
