2,163 research outputs found

    FELIX A full acceptance detector at the LHC

    Get PDF
    The FELIX collaboration has proposed the construction of a full acceptance detector for the LHC, to be located at Intersection Region 4, and to be commissioned concurrently with the LHC. The primary mission of FELIX is QCD: to provide comprehensive and definitive observations of a very broad range of strong-interaction processes. This paper reviews the detector concept and performance characteristics, the physics menu, and plans for integration of FELIX into the collider lattice and physical environment. The current status of the FELIX Letter of Intent is discussed.Comment: 11 pages, 7 figures. To be published in "Proceedings of the XXVII International Symposium on Multiparticle Dynamics, Frascati (Rome), Italy 8-12 Sept. 1997 (Nuclear Physics B, Proceedings Supplement)

    Estimation and analysis of the machine-induced background at the TOTEM roman pot detectors in the IR5 of the LHC

    Get PDF
    The problem of background generation in the experimental insertion IR5 of the LHC during machine operation in the dedicated TOTEM mode with low intensity beams and the specially designed β* = 1540 m optics is discussed. The sources of the machine-induced background in the IR5 forward physics areas are identified and their relative importance is evaluated. The results of the background simulation in the IR5 are presented, based on the most recent estimates of the residual gas density for TOTEM beam conditions. The methods for background analysis and rejection are explained

    Cosmic multi-muon events observed in the underground CERN-LEP tunnel with the ALEPH experiment

    Get PDF
    Multimuon events have been recorded with the ALEPH-detector, located 140 m underground, in parallel with e+^+e‚ąí^- data taking. Benefitting from the high spatial and momentum resolution of the ALEPH tracking chambers narrowly spaced muons in high multiplicity bundles could be analysed. The bulk of the data can be successfully described by standard production phenomena. The multiplicity distribution favors, though not with very high significance, a chemical composition which changes from light to heavier elements with increasing energy around the ``knee". The five highest multiplicity events, with up to 150 muons within an area of ‚ąľ\sim 8 m2^2, occur with a frequency which is almost an order of magnitude above the simulation. To establish a possible effect, more of these events should be recorded with a larger area detector

    The First 1 1/2 Years of TOTEM Roman Pot Operation at LHC

    Get PDF
    Since the LHC running season 2010, the TOTEM Roman Pots (RPs) are fully operational and serve for collecting elastic and diffractive proton-proton scattering data. Like for other moveable devices approaching the high intensity LHC beams, a reliable and precise control of the RP position is critical to machine protection. After a review of the RP movement control and position interlock system, the crucial task of alignment will be discussed.Comment: 3 pages, 6 figures; 2nd International Particle Accelerator Conference (IPAC 2011), San Sebastian, Spain; contribution MOPO01

    Diamond Detectors for the TOTEM Timing Upgrade

    Full text link
    This paper describes the design and the performance of the timing detector developed by the TOTEM Collaboration for the Roman Pots (RPs) to measure the Time-Of-Flight (TOF) of the protons produced in central diffractive interactions at the LHC. The measurement of the TOF of the protons allows the determination of the longitudinal position of the proton interaction vertex and its association with one of the vertices reconstructed by the CMS detectors. The TOF detector is based on single crystal Chemical Vapor Deposition (scCVD) diamond plates and is designed to measure the protons TOF with about 50 ps time precision. This upgrade to the TOTEM apparatus will be used in the LHC run 2 and will tag the central diffractive events up to an interaction pileup of about 1. A dedicated fast and low noise electronics for the signal amplification has been developed. The digitization of the diamond signal is performed by sampling the waveform. After introducing the physics studies that will most profit from the addition of these new detectors, we discuss in detail the optimization and the performance of the first TOF detector installed in the LHC in November 2015.Comment: 26 pages, 18 figures, 2 tables, submitted for publication to JINS

    LHC Optics Measurement with Proton Tracks Detected by the Roman Pots of the TOTEM Experiment

    Full text link
    Precise knowledge of the beam optics at the LHC is crucial to fulfil the physics goals of the TOTEM experiment, where the kinematics of the scattered protons is reconstructed with the near-beam telescopes -- so-called Roman Pots (RP). Before being detected, the protons' trajectories are influenced by the magnetic fields of the accelerator lattice. Thus precise understanding of the proton transport is of key importance for the experiment. A novel method of optics evaluation is proposed which exploits kinematical distributions of elastically scattered protons observed in the RPs. Theoretical predictions, as well as Monte Carlo studies, show that the residual uncertainty of this optics estimation method is smaller than 0.25 percent.Comment: 20 pages, 11 figures, 5 figures, to be submitted to New J. Phy

    Evidence for non-exponential elastic proton-proton differential cross-section at low |t| and sqrt(s) = 8 TeV by TOTEM

    Get PDF
    The TOTEM experiment has made a precise measurement of the elastic proton-proton differential cross-section at the centre-of-mass energy sqrt(s) = 8 TeV based on a high-statistics data sample obtained with the beta* = 90 optics. Both the statistical and systematic uncertainties remain below 1%, except for the t-independent contribution from the overall normalisation. This unprecedented precision allows to exclude a purely exponential differential cross-section in the range of four-momentum transfer squared 0.027 < |t| < 0.2 GeV^2 with a significance greater than 7 sigma. Two extended parametrisations, with quadratic and cubic polynomials in the exponent, are shown to be well compatible with the data. Using them for the differential cross-section extrapolation to t = 0, and further applying the optical theorem, yields total cross-section estimates of (101.5 +- 2.1) mb and (101.9 +- 2.1) mb, respectively, in agreement with previous TOTEM measurements.Comment: Final version published in Nuclear Physics

    TOTEM Physics

    Get PDF
    This article discusses the physics programme of the TOTEM experiment at the LHC. A new special beam optics with beta* = 90 m, enabling the measurements of the total cross-section, elastic pp scattering and diffractive phenomena already at early LHC runs, is explained. For this and the various other TOTEM running scenarios, the acceptances of the leading proton detectors and of the forward tracking stations for some physics processes are described.Peer reviewe
    • ‚Ķ