4 research outputs found

    Dissecting Orthosteric Contacts for a Reverse-Fragment-Based Ligand Design

    No full text
    Orthosteric sites on proteins are formed typically from noncontiguous interacting sites in three-dimensional space where the composite binding interaction of a biological ligand is mediated by multiple synergistic interactions of its constituent functional groups. Through these multiple interactions, ligands stabilize both the ligand binding site and the local secondary structure. However, relative energetic contributions of the individual contacts in these protein–ligand interactions are difficult to resolve. Deconvolution of the contributions of these various functional groups in natural inhibitors/ligand would greatly aid in iterative fragment-based drug discovery (FBDD). In this study, we describe an approach of progressive unfolding of a target protein using a gradient of denaturant urea to reveal the individual energetic contributions of various ligand-functional groups to the affinity of the entire ligand. Through calibrated unfolding of two protein–ligand systems: cAMP-bound regulatory subunit of Protein Kinase A (RIα) and IBMX-bound phosphodiesterase8 (PDE8), monitored by amide hydrogen–deuterium exchange mass spectrometry, we show progressive disruption of individual orthosteric contacts in the ligand binding sites, allowing us to rank the energetic contributions of these individual interactions. In the two cAMP-binding sites of RIα, exocyclic phosphate oxygens of cAMP were identified to mediate stronger interactions than ribose 2′-OH in both the RIα-cAMP binding interfaces. Further, we have also ranked the relative contributions of the different functional groups of IBMX based on their interactions with the orthosteric residues of PDE8. This strategy for deconstruction of individual binding sites and identification of the strongest functional group interaction in enzyme orthosteric sites offers a rational starting point for FBDD

    Fragments 1 and 2 differ in the nature of the allosteric effect in Hsp90.

    No full text
    <p><b>(A)</b> The absolute difference in numbers of deuterons (inferred from difference in mass in Daltons (Da) (y-axis) between the free and ligand bound state is plotted for each pepsin digest fragment listed from the N to C terminus (x-axis) of Hsp90 for each deuterium exchange time point (t = 0.5, 2, 5, 10 min) in a ‘difference plot’. Shifts in the positive scale represent decreases in deuterium exchange and shifts in the negative scale represent increases in deuterium exchange when compared to the apo-Hsp90. Regions showing significant differences above a threshold of 0.5 Da (red dashed line) are compared with orthosteric sites (blue boxes) to establish allosteric regions (red boxed). Fragment <b>2</b> does not show any changes in region A4, similar to 17-AAG, while fragment <b>1</b> shows differences, similar to Radicicol. In addition, fragment <b>1</b> shows an allosteric response at the regions A5 (residues 201–213 shown in orange box), which is not observed in the other three ligands. Time points are colored according to key. <b>(B,C)</b> The identified orthosteric (blue) and allosteric regions (red) for fragments are mapped on to the structure of Hsp90 in blue. <b>(C)</b> The allosteric site A5 in Hsp90, which is observed only fragment <b>2</b> is highlighted in orange. Radicicol bound at the ligand binding pocket is shown as sticks (PDB ID: 4EGK).</p

    Mapping protein-ligand interactions by HDXMS.

    No full text
    <p>Protein-ligand interactions can be analyzed by HDXMS by comparing deuterium exchange of the unliganded state of the protein with that bound to ligand (shown in yellow sticks). An ensemble view entails that the target protein <b>(E)</b> would exist in multiple conformations in the absence of ligand. Here a representative target protein is shown containing two sites- an orthosteric <b>(O)</b> site forming the ligand binding pocket (sites 1–4 are represented) and an allosteric <b>(A)</b> site. Deuterium exchange at the orthosteric site (O-site) (blue) is then governed by ligand binding kinetic parameters: kon, koff, concentration of ligand as well as the observed rate of HDX exchange, kex, which varies across different regions of the protein. The HDXMS output encompasses changes at the orthosteric O-site and long range conformational changes (red) at the allosteric A-site. Binding of ligand at the O-site <b>(E:L)</b> would result in decreased exchange while changes at the A-site <b>(E*:L)</b> could be reflected as decreases or increases in deuterium exchange.</p

    Distinguishing orthosteric and allosteric effects in Hsp90.

    No full text
    <p><b>(A)</b> The absolute difference in numbers of deuterons (y-axis) between the free and ligand bound state is plotted for each pepsin digest fragment listed from the N to C terminus (x-axis) of Hsp90 for each deuterium exchange time point (t = 0.5, 2, 5, 10 min) in a ‘difference plot’. Shifts in the positive scale represent decreases in deuterium exchange and shifts in the negative scale represent increases in deuterium exchange when compared to apo-Hsp90. Regions showing significant differences above a threshold of 0.5 Da (red dashed line) are compared with orthosteric sites (blue boxes) to predict allosteric regions. Peptides highlighted in red show regions showing differences in distal allosteric regions, not involved in orthosteric binding. Peptides spanning these regions are marked in red boxes and divided into four allosteric regions A1 to A4. Radicicol and 17-AAG shows differences in A1 and A2, while only radicicol showed changes in A3 and A4. Time points are colored according to key. <b>(B)</b> Predicted allosteric regions are mapped on to the structure of Hsp90 (red), together with the orthosteric regions, in blue. Radicicol bound at the ligand binding pocket is shown as sticks (PDB ID: 4EGK).</p
    corecore