2,242 research outputs found

    Handbook of X-Ray Astronomy

    Get PDF
    X-ray astronomy was born in the aftermath of World War II as military rockets were repurposed to lift radiation detectors above the atmosphere for a few minutes at a time. These early flights detected and studied X-ray emission from the Solar corona. The first sources beyond the Solar System were detected during a rocket flight in 1962 by a team headed by Riccardo Giaccom at American Science and Engineering, a company founded by physicists from MIT. The rocket used Geiger counters with a system designed to reduce non-X-ray backgrounds and collimators limiting the region of sky seen by the counters. As the rocket spun, the field of view (FOV) happened to pass over what was later found to be the brightest non-Solar X-ray source; later designated See X-1. It also detected a uniform background glow which could not be resolved into individual sources. A follow-up campaign using X-ray detectors with better spatial resolution and optical telescopes identified See X-1 as an interacting binary with a compact (neutron star) primary. This success led to further suborbital rocket flights by a number of groups. More X-ray binaries were discovered, as well as X-ray emission from supernova remnants, the radio galaxies M87 and Cygnus-A, and the Coma cluster. Detectors were improved and Geiger counters were replaced by proportional counters, which provided information about energy spectra of the sources. A constant challenge was determining precise positions of sources as only collimators were available

    A Chandra X-ray Study of Cygnus A - II. The Nucleus

    Full text link
    We report Chandra ACIS and quasi-simultaneous RXTE observations of the nearby, powerful radio galaxy Cygnus A, with the present paper focusing on the properties of the active nucleus. In the Chandra observation, the hard (> a few keV) X-ray emission is spatially unresolved with a size \approxlt 1 arcsec (1.5 kpc, H_0 = 50 km s^-1 Mpc^-1) and coincides with the radio and near infrared nuclei. In contrast, the soft (< 2 keV) emission exhibits a bi-polar nebulosity that aligns with the optical bi-polar continuum and emission-line structures and approximately with the radio jet. In particular, the soft X-ray emission corresponds very well with the [O III] \lambda 5007 and H\alpha + [N II] \lambda\lambda 6548, 6583 nebulosity imaged with HST. At the location of the nucleus there is only weak soft X-ray emission, an effect that may be intrinsic or result from a dust lane that crosses the nucleus perpendicular to the source axis. The spectra of the various X-ray components have been obtained by simultaneous fits to the 6 detectors. The compact nucleus is detected to 100 keV and is well described by a heavily absorbed power law spectrum with \Gamma_h = 1.52^{+0.12}_{-0.12} (similar to other narrow line radio galaxies) and equivalent hydrogen column N_H (nuc) = 2.0^{+0.1}_{-0.2} \times 10^{23} cm^-2. (Abstract truncated).Comment: To be published in the Astrophysical Journal, v564 January 1, 2002 issue; 34 pages, 11 figures (1 color

    The Extreme Spin of the Black Hole in Cygnus X-1

    Full text link
    The compact primary in the X-ray binary Cygnus X-1 was the first black hole to be established via dynamical observations. We have recently determined accurate values for its mass and distance, and for the orbital inclination angle of the binary. Building on these results, which are based on our favored (asynchronous) dynamical model, we have measured the radius of the inner edge of the black hole's accretion disk by fitting its thermal continuum spectrum to a fully relativistic model of a thin accretion disk. Assuming that the spin axis of the black hole is aligned with the orbital angular momentum vector, we have determined that Cygnus X-1 contains a near-extreme Kerr black hole with a spin parameter a/M>0.95 (3\sigma). For a less probable (synchronous) dynamical model, we find a/M>0.92 (3\sigma). In our analysis, we include the uncertainties in black hole mass, orbital inclination angle and distance, and we also include the uncertainty in the calibration of the absolute flux via the Crab. These four sources of uncertainty totally dominate the error budget. The uncertainties introduced by the thin-disk model we employ are particularly small in this case given the extreme spin of the black hole and the disk's low luminosity.Comment: Paper III of three papers on Cygnus X-1; 21 pages including 5 figures and 12 tables, ApJ in press. The paper is significantly restructured; two further tests of the robustness of our spin measurement are presented, and our error analysis has been substantially improved; the conclusions are unchange

    A Chandra X-ray Study of Cygnus A - III. The Cluster of Galaxies

    Get PDF
    The results from a recent Chandra ACIS-S study of the cluster surrounding Cygnus A are presented. We have deprojected the X-ray spectra taken from various elliptical shells in order to derive the run of temperature, density, pressure, and abundance for the ICM as a function of radius. We confirm a drop in temperature of the X-ray emitting gas from 8\sim 8 keV more than 2\sim 2^{\prime} from the center to 5\simeq 5 keV some 3030^{\prime\prime} from the center, with the coolest gas immediately adjacent to the radio galaxy. ``Belts'' of slightly cooler (4\simeq 4 keV) X-ray emitting gas run around the minor dimension of the cavity created by the radio source. We find a metallicity gradient in the X-ray emitting gas, with the highest metallicities (\sim solar) in the inner annuli, decreasing to 0.3\sim 0.3 solar in the outer parts. The total mass within 500 kpc is found to be (2.0--2.8) ×1014M\times 10^{14} M_{\odot} and approximately 3.5--5% of the mass is X-ray emitting gas [ABRIDGED].Comment: 27 pages, 13 figures (2 color). To appear in The Astrophysical Journal, v565 n1 Jan 20, 2002 issu

    The Mock LISA Data Challenges: from Challenge 3 to Challenge 4

    Full text link
    The Mock LISA Data Challenges are a program to demonstrate LISA data-analysis capabilities and to encourage their development. Each round of challenges consists of one or more datasets containing simulated instrument noise and gravitational waves from sources of undisclosed parameters. Participants analyze the datasets and report best-fit solutions for the source parameters. Here we present the results of the third challenge, issued in Apr 2008, which demonstrated the positive recovery of signals from chirping Galactic binaries, from spinning supermassive--black-hole binaries (with optimal SNRs between ~ 10 and 2000), from simultaneous extreme-mass-ratio inspirals (SNRs of 10-50), from cosmic-string-cusp bursts (SNRs of 10-100), and from a relatively loud isotropic background with Omega_gw(f) ~ 10^-11, slightly below the LISA instrument noise.Comment: 12 pages, 2 figures, proceedings of the 8th Edoardo Amaldi Conference on Gravitational Waves, New York, June 21-26, 200

    The Extreme Spin of the Black Hole in Cygnus X-1

    Get PDF
    The compact primary in the X-ray binary Cygnus X-1 was the first black hole to be established via dynamical observatIOns. We have recently determined accurate values for its mass and distance, and for the orbital inclination angle of the binary. Building on these.results, which are based on our favored (asynchronous) dynamical model, we have measured the radius of the inner edge of the black hole's accretion disk by fitting its thermal continuum.spectrum to a fully relativistic model of a thin accretion disk. Assuming that the spin axis of the black hole is aligned with the orbital angular momentum vector, we have determined that Cygnus X-I contains a near-extreme Kerr black hole with a spin parameter a* > 0.95 (3(sigma)). For a less probable (synchronous) dynamIcal model, we find a* > 0.92 (3(sigma)). In our analysis, we include the uncertainties in black hole mass orbital inclination angle and distance, and we also include the uncertainty in the calibration of the absolute flux via the Crab. These four sources of uncertainty totally dominate the error budget. The uncertainties introduced by the thin-disk model we employ are particularly small in this case given the extreme spin of the black hole and the disk's low luminosity

    ROME/REA : a gravitational microlensing search for exoplanets beyond the snow line on a global network of robotic telescopes

    Get PDF
    Funding: KH acknowledges support from STFC grant ST/R000824/1.Planet population synthesis models predict an abundance of planets with semimajor axes between 1 and 10 au, yet they lie at the edge of the detection limits of most planet finding techniques. Discovering these planets and studying their distribution is critical to understanding the physical processes that drive planet formation. ROME/REA is a gravitational microlensing project whose main science driver is to discover exoplanets in the cold outer regions of planetary systems. To achieve this, it uses a novel approach combining a multiband survey with reactive follow-up observations, exploiting the unique capabilities of the Las Cumbres Observatory global network of robotic telescopes combined with a Target and Observation Manager system. We present the main science objectives and a technical overview of the project, including initial results.PostprintPeer reviewe

    Suzaku Observations of Abell 1795: Cluster Emission to R_200

    Full text link
    We report Suzaku observations of the galaxy cluster Abell 1795 that extend to r_200 ~ 2 Mpc, the radius within which the mean cluster mass density is 200 times the cosmic critical density. These observations are the first to probe the state of the intracluster medium in this object at r > 1.3 Mpc. We sample two disjoint sectors in the cluster outskirts (1.3 < r < 1.9 Mpc) and detect X-ray emission in only one of them to a limiting (3-sigma) soft X-ray surface brightness of B(0.5-2 keV) = 1.8 x 10^-12 erg s^-1 cm^-2 deg^-2, a level less than 20% of the cosmic X-ray background brightness. We trace the run of temperature with radius at r > 0.4 Mpc and find that it falls relatively rapidly (T ~ r^-0.9), reaching a value about one third of its peak at the largest radius we can measure it. Assuming the intracluster medium is in hydrostatic equilibrium and is polytropic, we find a polytropic index of 1.3 +0.3-0.2 and we estimate a mass of 4.1 +0.5-0.3 x 10^14 M_solar within 1.3 Mpc, somewhat (2.7-sigma) lower than that reported by previous observers. However, our observations provide evidence for departure from hydrostatic equilibrium at radii as small as r ~ 1.3 Mpc ~ r_500 in this apparently regular and symmetrical cluster.Comment: 19 pages, 12 figures, accepted for publication in PAS
    corecore