5 research outputs found

    Fc receptor binding of anti-CD3 monoclonal antibodies is not essential for immunosuppression, but triggers cytokine-related side effects

    Get PDF
    A major drawback to the use of OKT3, a mouse anti-CD3 monoclonal antibody (mAb), as an immunosuppressive agent is the associated cytokine release syndrome. We used a mouse model to elucidate the properties of anti-CD3 mAb responsible for these cytokine-related side effects. We have previously demonstrated that the hamster anti-CD3 mAb 145-2C11 induced strong cytokine release and morbidity in vivo, whereas two rat anti-CD3 mAb 17A2 and KT3 did not. In the current study, we show that the mitogenic capacity of soluble anti-CD3 mAb in vitro correlates with their induction of side effects in vivo. Mitogenesis in vitro and tumor necrosis factor-α (TNF-α) release in vivo induced by anti-CD3 mAb could be inhibited by the anti-FcγR mAb 2.4G2, indicating that FcγR binding of anti-CD3 mAb is responsible for their mitogenic properties and for their induction of side effects. Importantly, the two non-mitogenic rat anti-CD3 mAb were equally capable of suppressing skin allograft rejection as the mitogenic hamster anti-CD3 mAb, suggesting FcγR binding of anti-CD3 mAb is not essential for their immunosuppressive properties. This suggestion is reinforced by our demonstration that administration of 2.4G2 in vivo did not interfere with immunosuppression of skin allograft rejection by 145-2C11. These findings suggest that clinical use of non-mitogenic anti-CD3 mAb will result in effective immunosuppression without cytokine-related side effects

    Distinguishing septic from normal donors by detection of sPLA2-IIA from human plasma using a microsieve-based immunoassay

    Get PDF
    Bloodstream infections that progress to septic shock are responsible for hundreds of thousands of deaths each year, and are associated with significant healthcare costs. Recent studies have shown that a member of the secreted phospholipase protein family, termed sPLA2-IIA, may play a role during the innate immune response to bacterial infections, and is elevated in the plasma of septic patients. In this report, the feasibility of a simple microsieve-based sPLA2-IIA detection immunoassay was explored. Microsieves containing 5 μm pores were covalently coupled with a sPLA2-IIA-specific monoclonal antibody at 0.1, 1.0, and 10 μg/mL and then assayed with plasma-based positive and negative controls to determine the optimal coating concentration. Recombinant sPLA2-IIA was then serially diluted to a final concentration of 200, 100, 50, 25, 12.5, and 6.25 ng/mL and tested alongside a non-spiked sample to estimate the detection limit of the prototype assay. Recombinant sPLA2-IIA was also spiked into serum, EDTA-plasma, and Lithium-Heparin plasma, in an effort to evaluate assay performance when analyzing these sample matrices. The preliminary limit of detection studies suggests that the microsieve assay is able to distinguish approximately 6–12 ng/mL of sPLA2-IIA from a non-spiked sample. When compared to an immunoassay diluent, the microsieve assay also yielded acceptable percent recoveries for each of the three sample matrices spiked with clinically significant levels of sPLA2-IIA. The sPLA2-IIA microsieve assay prototype also clearly distinguished five samples from septic patients from five normal donor samples, and the results were in good agreement with a comparator ELISA test system (R2 = 0.9347)

    Imaging technique implemented in CellTracks system

    Get PDF
    Background:\ud We developed the CellTracks cell analysis system that, similar to flow cytometry, yields multiparameter information by which the cells can be differentiated. We describe the implementation of a laser scanning imaging method in the system. Image analysis of the cells improves the specificity of cell classification, especially in cases where the particular cells are found relatively infrequently and one has to discriminate between artifacts and real events. -\ud Methods:\ud Fluorescent images of immunomagnetically labeled and aligned cells are obtained by passing the cells through a laser focus. The laser focus is smaller than the objects and subsequent frames captured by a regular surveillance CCD camera with a frame grabber board represent different parts of the cells. Complete images of the cells are constructed by shifting each image with respect to each other and adding individual pixel values. -\ud Results:\ud The power of combining a fluorescent image with multiparametric data is demonstrated by imaging fluorescent and magnetically labeled beads and cells. The image gives additional information about the dye distribution across the objects. Changes in dye distribution as a function of time were observed in leukocytes labeled with the red fluorescent label, Oxazine750, which are imaged at different time intervals. -\ud Conclusions:\ud An imaging technique implemented in the CellTracks system provides high-resolution fluorescent images of events previously identified by the system. The images of the fluorescent cells enhance the ability to classify rare events

    Cell analysis system based on compact disk technology

    Get PDF
    Background:\ud A cell analysis system was developed to enumerate and differentiate magnetically aligned cells selected from whole blood. The cellular information extracted is similar to the readout of musical information from a compact disk (CD). Here we describe the optical design and data processing of the system. The performance of the system is demonstrated using fluorescent-labeled cells and beads. -\ud Materials and Methods:\ud System performance was demonstrated with 6-m polystyrene beads labeled with magnetic nanoparticles and allophycocyanin (APC) and immunomagnetically aligned leukocytes, fluorescently labeled with Oxazine750 and CD4-APC, CD8-Cy5.5, and CD14-APC/Cy7 in whole blood. -\ud Results:\ud The sensitivity of the system was demonstrated using APC-labeled beads. With this system, beads containing 333 APC molecules could easily be resolved from the background. This level of sensitivity was not achievable with a commercial flow cytometer. A maximum of 20,000 immunomagnetically labeled cells could be aligned and analyzed in between 0.6 m of Ni lines, distributed over a surface area of 18 mm2 and extracted from a blood volume that depended on the height of the chamber. The utility of the system was demonstrated by performing a three-color CD4-CD8-CD14 assay. -\ud Conclusions:\ud We built a cell analysis system based on immunomagnetic cell selection and alignment and analysis of fluorescent signals employing CD-technology that is as good or better than current commercial analyzers. The cell analysis can be performed in whole blood or any other type of cell suspension without extensive sample preparation

    Magnetic field design for selecting and aligning immunomagnetic labeled cells

    Get PDF
    Background:\ud Recently we introduced the CellTracks cell analysis system, in which samples are prepared based on a combination of immunomagnetic selection, separation, and alignment of cells along ferromagnetic lines. Here we describe the underlying magnetic principles and considerations made in the magnetic field design to achieve the best possible cell selection and alignment of magnetically labeled cells. -\ud Materials and Methods:\ud Computer simulations, in combination with experimental data, were used to optimize the design of the magnets and Ni lines to obtain the optimal magnetic configuration. -\ud Results:\ud A homogeneous cell distribution on the upper surface of the sample chamber was obtained with a magnet where the pole faces were tilted towards each other. The spatial distribution of magnetically aligned objects in between the Ni lines was dependent on the ratio of the diameter of the aligned object and the line spacing, which was tested with magnetically and fluorescently labeled 6 m polystyrene beads. The best result was obtained when the line spacing was equal to or smaller than the diameter of the aligned object. -\ud Conclusions:\ud The magnetic gradient of the designed permanent magnet extracts magnetically labeled cells from any cell suspension to a desired plane, providing a homogeneous cell distribution. In addition, it magnetizes ferro-magnetic Ni lines in this plane whose additional local gradient adds to the gradient of the permanent magnet. The resultant gradient aligns the magnetically labeled cells first brought to this plane. This combination makes it possible, in a single step, to extract and align cells on a surface from any cell suspension