3 research outputs found
Klassifizierung, Vorhersage und Bewertung graphischer neuronaler Netze auf Online-Social-Media-Plattformen
The vast amount of data generated on social media platforms have made them a valuable source of information for businesses, governments and researchers. Social media data can provide insights into user behavior, preferences, and opinions. In this work, we address two important challenges in social media analytics. Predicting user engagement with online content has become a critical task for content creators to increase user engagement and reach larger audiences. Traditional user engagement prediction approaches rely solely on features derived from the user and content. However, a new class of deep learning methods based on graphs captures not only the content features but also the graph structure of social media networks.
This thesis proposes a novel Graph Neural Network (GNN) approach to predict user interaction with tweets. The proposed approach combines the features of users, tweets and their engagement graphs. The tweet text features are extracted using pre-trained embeddings from language models, and a GNN layer is used to embed the user in a vector space. The GNN model then combines the features and graph structure to predict user engagement. The proposed approach achieves an accuracy value of 94.22% in classifying user interactions, including likes, retweets, replies, and quotes.
Another major challenge in social media analysis is detecting and classifying social bot accounts. Social bots are automated accounts used to manipulate public opinion by spreading misinformation or generating fake interactions. Detecting social bots is critical to prevent their negative impact on public opinion and trust in social media. In this thesis, we classify social bots on Twitter by applying Graph Neural Networks. The proposed approach uses a combination of both the features of a node and an aggregation of the features of a node’s neighborhood to classify social bot accounts. Our final results indicate a 6% improvement in the area under the curve score in the final predictions through the utilization of GNN.
Overall, our work highlights the importance of social media data and the potential of new methods such as GNNs to predict user engagement and detect social bots. These methods have important implications for improving the quality and reliability of information on social media platforms and mitigating the negative impact of social bots on public opinion and discourse.Die riesige Menge an Daten, die auf Social-Media-Plattformen generiert wird, hat sie zu einer wertvollen Informationsquelle für Unternehmen, Regierungen und Forscher gemacht. Daten aus sozialen Medien können Einblicke in das Verhalten, die Vorlieben und die Meinungen der Nutzer geben. In dieser Arbeit befassen wir uns mit zwei wichtigen Herausforderungen im Bereich der Social-Media-Analytik. Die Vorhersage des Nutzerinteresses an Online-Inhalten ist zu einer wichtigen Aufgabe für die Ersteller von Inhalten geworden, um das Nutzerengagement zu steigern und ein größeres Publikum zu erreichen. Herkömmliche Ansätze zur Vorhersage des Nutzerengagements stützen sich ausschließlich auf Merkmale, die aus dem Nutzer und dem Inhalt abgeleitet werden. Eine neue Klasse von Deep-Learning-Methoden, die auf Graphen basieren, erfasst jedoch nicht nur die Inhaltsmerkmale, sondern auch die Graphenstruktur von Social-Media-Netzwerken.
In dieser Arbeit wird ein neuartiger Graph Neural Network (GNN)-Ansatz zur Vorhersage der Nutzerinteraktion mit Tweets vorgeschlagen. Der vorgeschlagene Ansatz kombiniert die Merkmale von Nutzern, Tweets und deren Engagement-Graphen. Die Textmerkmale der Tweets werden mit Hilfe von vortrainierten Einbettungen aus Sprachmodellen extrahiert, und eine GNN-Schicht wird zur Einbettung des Nutzers in einen Vektorraum verwendet. Das GNN-Modell kombiniert dann die Merkmale und die Graphenstruktur, um das Nutzerengagement vorherzusagen. Der vorgeschlagene Ansatz erreicht eine Genauigkeit von 94,22% bei der Klassifizierung von Benutzerinteraktionen, einschließlich Likes, Retweets, Antworten und Zitaten.
Eine weitere große Herausforderung bei der Analyse sozialer Medien ist die Erkennung und Klassifizierung von Social-Bot-Konten. Social Bots sind automatisierte Konten, die dazu dienen, die öffentliche Meinung zu manipulieren, indem sie Fehlinformationen verbreiten oder gefälschte Interaktionen erzeugen. Die Erkennung von Social Bots ist entscheidend, um ihre negativen Auswirkungen auf die öffentliche Meinung und das Vertrauen in soziale Medien zu verhindern. In dieser Arbeit klassifizieren wir Social Bots auf Twitter mit Hilfe von Graph Neural Networks. Der vorgeschlagene Ansatz verwendet eine Kombination aus den Merkmalen eines Knotens und einer Aggregation der Merkmale der Nachbarschaft eines Knotens, um Social-Bot-Konten zu klassifizieren. Unsere Endergebnisse zeigen eine 6%ige Verbesserung der Fläche unter der Kurve bei den endgültigen Vorhersagen durch die Verwendung von GNN.
Insgesamt unterstreicht unsere Arbeit die Bedeutung von Social-Media-Daten und das Potenzial neuer Methoden wie GNNs zur Vorhersage des Nutzer-Engagements und zur Erkennung von Social Bots. Diese Methoden haben wichtige Auswirkungen auf die Verbesserung der Qualität und Zuverlässigkeit von Informationen auf Social-Media-Plattformen und die Abschwächung der negativen Auswirkungen von Social Bots auf die öffentliche Meinung und den Diskurs
Detect me if you can
Spam Bots have become a threat to online social networks with their malicious behavior, posting misinformation messages and influencing online platforms to fulfill their motives. As spam bots have become more advanced over time, creating algorithms to identify bots remains an open challenge. Learning low-dimensional embeddings for nodes in graph structured data has proven to be useful in various domains. In this paper, we propose a model based on graph convolutional neural networks (GCNN) for spam bot detection. Our hypothesis is that to better detect spam bots, in addition to defining a features set, the social graph must also be taken into consideration. GCNNs are able to leverage both the features of a node and aggregate the features of a node’s neighborhood. We compare our approach, with two methods that work solely on a features set and on the structure of the graph. To our knowledge, this work is the first attempt of using graph convolutional neural networks in spam bot detection
HPI Future SOC Lab – Proceedings 2019
The “HPI Future SOC Lab” is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners.
The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies.
This technical report presents results of research projects executed in 2019. Selected projects have presented their results on April 9th and November 12th 2019 at the Future SOC Lab Day events.Das Future SOC Lab am HPI ist eine Kooperation des Hasso-Plattner-Instituts mit verschiedenen Industriepartnern. Seine Aufgabe ist die Ermöglichung und Förderung des Austausches zwischen Forschungsgemeinschaft und Industrie.
Am Lab wird interessierten Wissenschaftlern eine Infrastruktur von neuester Hard- und Software kostenfrei für Forschungszwecke zur Verfügung gestellt. Dazu zählen teilweise noch nicht am Markt verfügbare Technologien, die im normalen Hochschulbereich in der Regel nicht zu finanzieren wären, bspw. Server mit bis zu 64 Cores und 2 TB Hauptspeicher. Diese Angebote richten sich insbesondere an Wissenschaftler in den Gebieten Informatik und Wirtschaftsinformatik. Einige der Schwerpunkte sind Cloud Computing, Parallelisierung und In-Memory Technologien.
In diesem Technischen Bericht werden die Ergebnisse der Forschungsprojekte des Jahres 2019 vorgestellt. Ausgewählte Projekte stellten ihre Ergebnisse am 09. April und 12. November 2019 im Rahmen des Future SOC Lab Tags vor