725 research outputs found

    Semantic Part Segmentation using Compositional Model combining Shape and Appearance

    Get PDF
    In this paper, we study the problem of semantic part segmentation for animals. This is more challenging than standard object detection, object segmentation and pose estimation tasks because semantic parts of animals often have similar appearance and highly varying shapes. To tackle these challenges, we build a mixture of compositional models to represent the object boundary and the boundaries of semantic parts. And we incorporate edge, appearance, and semantic part cues into the compositional model. Given part-level segmentation annotation, we develop a novel algorithm to learn a mixture of compositional models under various poses and viewpoints for certain animal classes. Furthermore, a linear complexity algorithm is offered for efficient inference of the compositional model using dynamic programming. We evaluate our method for horse and cow using a newly annotated dataset on Pascal VOC 2010 which has pixelwise part labels. Experimental results demonstrate the effectiveness of our method

    Genetic CNN

    Full text link
    The deep Convolutional Neural Network (CNN) is the state-of-the-art solution for large-scale visual recognition. Following basic principles such as increasing the depth and constructing highway connections, researchers have manually designed a lot of fixed network structures and verified their effectiveness. In this paper, we discuss the possibility of learning deep network structures automatically. Note that the number of possible network structures increases exponentially with the number of layers in the network, which inspires us to adopt the genetic algorithm to efficiently traverse this large search space. We first propose an encoding method to represent each network structure in a fixed-length binary string, and initialize the genetic algorithm by generating a set of randomized individuals. In each generation, we define standard genetic operations, e.g., selection, mutation and crossover, to eliminate weak individuals and then generate more competitive ones. The competitiveness of each individual is defined as its recognition accuracy, which is obtained via training the network from scratch and evaluating it on a validation set. We run the genetic process on two small datasets, i.e., MNIST and CIFAR10, demonstrating its ability to evolve and find high-quality structures which are little studied before. These structures are also transferrable to the large-scale ILSVRC2012 dataset.Comment: Submitted to CVPR 2017 (10 pages, 5 figures

    Parsing Occluded People by Flexible Compositions

    Get PDF
    This paper presents an approach to parsing humans when there is significant occlusion. We model humans using a graphical model which has a tree structure building on recent work [32, 6] and exploit the connectivity prior that, even in presence of occlusion, the visible nodes form a connected subtree of the graphical model. We call each connected subtree a flexible composition of object parts. This involves a novel method for learning occlusion cues. During inference we need to search over a mixture of different flexible models. By exploiting part sharing, we show that this inference can be done extremely efficiently requiring only twice as many computations as searching for the entire object (i.e., not modeling occlusion). We evaluate our model on the standard benchmarked "We Are Family" Stickmen dataset and obtain significant performance improvements over the best alternative algorithms.Comment: CVPR 15 Camera Read

    Articulated Pose Estimation by a Graphical Model with Image Dependent Pairwise Relations

    Full text link
    We present a method for estimating articulated human pose from a single static image based on a graphical model with novel pairwise relations that make adaptive use of local image measurements. More precisely, we specify a graphical model for human pose which exploits the fact the local image measurements can be used both to detect parts (or joints) and also to predict the spatial relationships between them (Image Dependent Pairwise Relations). These spatial relationships are represented by a mixture model. We use Deep Convolutional Neural Networks (DCNNs) to learn conditional probabilities for the presence of parts and their spatial relationships within image patches. Hence our model combines the representational flexibility of graphical models with the efficiency and statistical power of DCNNs. Our method significantly outperforms the state of the art methods on the LSP and FLIC datasets and also performs very well on the Buffy dataset without any training.Comment: NIPS 2014 Camera Read

    1 A Hierarchical Compositional System for Rapid Object Detection

    Get PDF
    We describe a hierarchical compositional system for detecting deformable objects in images. Objects are represented by graphical models. The algorithm uses a hierarchical tree where the root of the tree corresponds to the full object and lower-level elements of the tree correspond to simpler features. The algorithm proceeds by passing simple messages up and down the tree. The method works rapidly, in under a second, on 320 × 240 images. We demonstrate the approach on detecting cats, horses, and hands. The method works in the presence of background clutter and occlusions. Our approach is contrasted with more traditional methods such as dynamic programming and belief propagation.
    • …
    corecore