3 research outputs found
Control-theoretic approaches for efficient transmission on IEEE 802.11e wireless networks
With the increasing use of multimedia applications on the wireless network, the functionalities of the IEEE 802.11 WLAN was extended to allow traffic differentiation so that priority traffic gets quicker service time depending on their Quality of Service (QoS) requirements. The extended functionalities contained in the IEEE Medium Access Control (MAC) and Physical Layer (PHY) Specifications, i.e. the IEEE 802.11e specifications, are recommended values for channel access parameters along traffic lines and the channel access parameters are: the Minimum Contention Window CWmin, Maximum Contention Window CWmax, Arbitration inter-frame space number, (AIFSN) and the Transmission Opportunity (TXOP). These default Enhanced Distributed Channel Access (EDCA) contention values used by each traffic type in accessing the wireless medium are only recommended values which could be adjusted or changed based on the condition of number of associated nodes on the network. In particular, we focus on the Contention Window (CW) parameter and it has been shown that when the number of nodes on the network is small, a smaller value of CWmin should be used for channel access in order to avoid underutilization of channel time and when the number of associated nodes is large, a larger value of CWmin should be used in order to avoid large collisions and retransmissions on the network.
Fortunately, allowance was made for these default values to be adjusted or changed but the challenge has been in designing an algorithm that constantly and automatically tunes the CWmin value so that the Access Point (AP) gives out the right CWmin value to be used on the WLAN and this value should be derived based on the level of activity experienced on the network or predefined QoS constraints while considering the dynamic nature of the WLAN.
In this thesis, we propose the use of feedback based control and we design a controller for wireless medium access. The controller will give an output which will be the EDCA CWmin value to be used by contending stations/nodes in accessing the medium and this value will be based on current WLAN conditions. We propose the use of feedback control due to its established mathematical concepts particularly for single-input-single-output systems and multi-variable systems which are scenarios that apply to the WLAN
A control theoretic approach to achieve proportional fairness in 802.11e EDCA WLANs
This paper considers proportional fairness amongst ACs in an EDCA WLAN for
provision of distinct QoS requirements and priority parameters. A detailed
theoretical analysis is provided to derive the optimal station attempt
probability which leads to a proportional fair allocation of station
throughputs. The desirable fairness can be achieved using a centralised
adaptive control approach. This approach is based on multivariable statespace
control theory and uses the Linear Quadratic Integral (LQI) controller to
periodically update CWmin till the optimal fair point of operation. Performance
evaluation demonstrates that the control approach has high accuracy performance
and fast convergence speed for general network scenarios. To our knowledge this
might be the first time that a closed-loop control system is designed for EDCA
WLANs to achieve proportional fairness
Feedback control algorithm for optimal throughput in IEEE 802.11e EDCA networks
The minimum contention window ( ) value of the EDCA protocol gives priority access to the different categories of traffic on the WLAN and also affects the rate of collision and delays experienced on the WLAN. In the IEEE 802.11e standard, the values for the parameter are recommended values and should be adapted to WLAN conditions for optimal performance of the network but these recommended values are generally used as the de facto values for contention on the WLAN. This is due to the difficulty of assessing current conditions on the WLAN in real time due to the dynamic nature of the WLAN. In this paper, we propose a dynamic feedback based control algorithm (FCA) that assesses the WLAN and outputs contention window value with respect to number of active nodes on the WLAN. The controller can also be tuned based on network design requirements