11 research outputs found

    Aggregation-Induced Emission Nanoparticles Encapsulated with PEGylated Nano Graphene Oxide and Their Applications in Two-Photon Fluorescence Bioimaging and Photodynamic Therapy <i>in Vitro</i> and <i>in Vivo</i>

    No full text
    Aggregation-induced emission (AIE) nanoparticles have been shown promise for fluorescence bioimaging and photodynamic therapy due to the good combination of nanoparticles and organic dyes or photosensitizers. Among several kinds of AIE nanoparticles, those that are capsulated with nanographene oxides (NGO) are easy to make, size-tunable, and have proven to be very stable in deionized water. However, the stability in saline solution still needs improvement for further applications in chemical or biomedical fields, and the efficacy of photodynamic therapy using NGO-capsulate AIE photosensitizers has not been evaluated yet. Herein, we modified NGO with polyethylene glycol (PEG) to improve the stability of NGO-capsulated AIE nanoparticles in phosphate buffer saline. Furthermore, by combining this modification method with a dual-functional molecule which has both typical AIE property and photosensitizing ability, we performed both two-photon fluorescence bioimaging and photodynamic therapy <i>in vitro</i> and <i>in vivo</i>. Our work shows that AIE nanoparticles capsulated with PEGylated nanographene oxide can be a powerful tool for future bioimaging and photodynamic therapy applications

    MOESM3 of Circ-AKT3 inhibits clear cell renal cell carcinoma metastasis via altering miR-296-3p/E-cadherin signals

    No full text
    Additional file 3: Figure S2. (A-B). MTT assay indicated circ-AKT3 makes no difference in the proliferation of ccRCC cell lines. Data are the means Âą SEM of three independent experiments

    MOESM1 of Circ-AKT3 inhibits clear cell renal cell carcinoma metastasis via altering miR-296-3p/E-cadherin signals

    No full text
    Additional file 1: Table S1. The sequences of primers and oligonucleotides used in this study. Table S2. Detailed information of ccRCC patients is listed. Table S3. Correlation of circ-AKT3 expression with clinicopathologic features of ccRCC patients

    MOESM4 of Circ-AKT3 inhibits clear cell renal cell carcinoma metastasis via altering miR-296-3p/E-cadherin signals

    No full text
    Additional file 4: Figure S3. (A) Correlations were identified between circ-AKT3 and E-cadherin expression level in 60 paired ccRCC tissues. (B) RT-qPCR analysis of miR-296-3p expression in our own ccRCC tissues. (C) Correlations analysis between circ-AKT3 and miR-296-3p expression level in 60 paired ccRCC tissues. (D) Correlations analysis between E-cadherin and miR-296-3p expression level in 60 paired ccRCC tissues. (E) miR-296-3p expression level was decreased after altering circ-AKT3 in ccRCC cell lines. (F) AGO2-RIP assay was conducted to further verify that circ-AKT3 and miR-296-3p coexisted in AGO2 pellet to affect downstream gene post-transcription. Data are the means ± SEM of three independent experiments. *P<0.05, **P < 0.01; ***P < 0.001

    Aggregation-Induced Emission Luminogen with Near-Infrared-II Excitation and Near-Infrared‑I Emission for Ultradeep Intravital Two-Photon Microscopy

    No full text
    Currently, a serious problem obstructing the large-scale clinical applications of fluorescence technique is the shallow penetration depth. Two-photon fluorescence microscopic imaging with excitation in the longer-wavelength near-infrared (NIR) region (>1100 nm) and emission in the NIR-I region (650–950 nm) is a good choice to realize deep-tissue and high-resolution imaging. Here, we report ultradeep two-photon fluorescence bioimaging with 1300 nm NIR-II excitation and NIR-I emission (peak ∼810 nm) based on a NIR aggregation-induced emission luminogen (AIEgen). The crab-shaped AIEgen possesses a planar core structure and several twisting phenyl/naphthyl rotators, affording both high fluorescence quantum yield and efficient two-photon activity. The organic AIE dots show high stability, good biocompatibility, and a large two-photon absorption cross section of 1.22 × 10<sup>3</sup> GM. Under 1300 nm NIR-II excitation, <i>in vivo</i> two-photon fluorescence microscopic imaging helps to reconstruct the 3D vasculature with a high spatial resolution of sub-3.5 μm beyond the white matter (>840 μm) and even to the hippocampus (>960 μm) and visualize small vessels of ∼5 μm as deep as 1065 μm in mouse brain, which is among the largest penetration depths and best spatial resolution of <i>in vivo</i> two-photon imaging. Rational comparison with the AIE dots manifests that two-photon imaging outperforms the one-photon mode for high-resolution deep imaging. This work will inspire more sight and insight into the development of efficient NIR fluorophores for deep-tissue biomedical imaging

    Aggregation-Induced Emission Luminogen with Near-Infrared-II Excitation and Near-Infrared‑I Emission for Ultradeep Intravital Two-Photon Microscopy

    No full text
    Currently, a serious problem obstructing the large-scale clinical applications of fluorescence technique is the shallow penetration depth. Two-photon fluorescence microscopic imaging with excitation in the longer-wavelength near-infrared (NIR) region (>1100 nm) and emission in the NIR-I region (650–950 nm) is a good choice to realize deep-tissue and high-resolution imaging. Here, we report ultradeep two-photon fluorescence bioimaging with 1300 nm NIR-II excitation and NIR-I emission (peak ∼810 nm) based on a NIR aggregation-induced emission luminogen (AIEgen). The crab-shaped AIEgen possesses a planar core structure and several twisting phenyl/naphthyl rotators, affording both high fluorescence quantum yield and efficient two-photon activity. The organic AIE dots show high stability, good biocompatibility, and a large two-photon absorption cross section of 1.22 × 10<sup>3</sup> GM. Under 1300 nm NIR-II excitation, <i>in vivo</i> two-photon fluorescence microscopic imaging helps to reconstruct the 3D vasculature with a high spatial resolution of sub-3.5 μm beyond the white matter (>840 μm) and even to the hippocampus (>960 μm) and visualize small vessels of ∼5 μm as deep as 1065 μm in mouse brain, which is among the largest penetration depths and best spatial resolution of <i>in vivo</i> two-photon imaging. Rational comparison with the AIE dots manifests that two-photon imaging outperforms the one-photon mode for high-resolution deep imaging. This work will inspire more sight and insight into the development of efficient NIR fluorophores for deep-tissue biomedical imaging

    Aggregation-Induced Emission Luminogen with Near-Infrared-II Excitation and Near-Infrared‑I Emission for Ultradeep Intravital Two-Photon Microscopy

    No full text
    Currently, a serious problem obstructing the large-scale clinical applications of fluorescence technique is the shallow penetration depth. Two-photon fluorescence microscopic imaging with excitation in the longer-wavelength near-infrared (NIR) region (>1100 nm) and emission in the NIR-I region (650–950 nm) is a good choice to realize deep-tissue and high-resolution imaging. Here, we report ultradeep two-photon fluorescence bioimaging with 1300 nm NIR-II excitation and NIR-I emission (peak ∼810 nm) based on a NIR aggregation-induced emission luminogen (AIEgen). The crab-shaped AIEgen possesses a planar core structure and several twisting phenyl/naphthyl rotators, affording both high fluorescence quantum yield and efficient two-photon activity. The organic AIE dots show high stability, good biocompatibility, and a large two-photon absorption cross section of 1.22 × 10<sup>3</sup> GM. Under 1300 nm NIR-II excitation, <i>in vivo</i> two-photon fluorescence microscopic imaging helps to reconstruct the 3D vasculature with a high spatial resolution of sub-3.5 μm beyond the white matter (>840 μm) and even to the hippocampus (>960 μm) and visualize small vessels of ∼5 μm as deep as 1065 μm in mouse brain, which is among the largest penetration depths and best spatial resolution of <i>in vivo</i> two-photon imaging. Rational comparison with the AIE dots manifests that two-photon imaging outperforms the one-photon mode for high-resolution deep imaging. This work will inspire more sight and insight into the development of efficient NIR fluorophores for deep-tissue biomedical imaging
    corecore