93 research outputs found

    The Dirichlet problem for constant mean curvature surfaces in Heisenberg space

    Full text link
    We study constant mean curvature graphs in the Riemannian 3-dimensional Heisenberg spaces H=H(τ){\cal H}={\cal H}(\tau). Each such H{\cal H} is the total space of a Riemannian submersion onto the Euclidean plane R2\mathbb{R}^2 with geodesic fibers the orbits of a Killing field. We prove the existence and uniqueness of CMC graphs in H{\cal H} with respect to the Riemannian submersion over certain domains Ω⊂R2\Omega\subset\mathbb{R}^2 taking on prescribed boundary values

    Representations and classification of traveling wave solutions to Sinh-G{\"o}rdon equation

    Full text link
    Two concepts named atom solution and combinatory solution are defined. The classification of all single traveling wave atom solutions to Sinh-G{\"o}rdon equation is obtained, and qualitative properties of solutions are discussed. In particular, we point out that some qualitative properties derived intuitively from dynamic system method aren't true. In final, we prove that our solutions to Sinh-G{\"o}rdon equation include all solutions obtained in the paper[Fu Z T et al, Commu. in Theor. Phys.(Beijing) 2006 45 55]. Through an example, we show how to give some new identities on Jacobian elliptic functions.Comment: 12 pages. accepted by Communications in theoretical physics (Beijing

    A compactness theorem for complete Ricci shrinkers

    Get PDF
    We prove precompactness in an orbifold Cheeger-Gromov sense of complete gradient Ricci shrinkers with a lower bound on their entropy and a local integral Riemann bound. We do not need any pointwise curvature assumptions, volume or diameter bounds. In dimension four, under a technical assumption, we can replace the local integral Riemann bound by an upper bound for the Euler characteristic. The proof relies on a Gauss-Bonnet with cutoff argument.Comment: 28 pages, final version, to appear in GAF

    Parabolic stable surfaces with constant mean curvature

    Full text link
    We prove that if u is a bounded smooth function in the kernel of a nonnegative Schrodinger operator −L=−(Δ+q)-L=-(\Delta +q) on a parabolic Riemannian manifold M, then u is either identically zero or it has no zeros on M, and the linear space of such functions is 1-dimensional. We obtain consequences for orientable, complete stable surfaces with constant mean curvature H∈RH\in\mathbb{R} in homogeneous spaces E(κ,τ)\mathbb{E}(\kappa,\tau) with four dimensional isometry group. For instance, if M is an orientable, parabolic, complete immersed surface with constant mean curvature H in H2×R\mathbb{H}^2\times\mathbb{R}, then ∣H∣≤1/2|H|\leq 1/2 and if equality holds, then M is either an entire graph or a vertical horocylinder.Comment: 15 pages, 1 figure. Minor changes have been incorporated (exchange finite capacity by parabolicity, and simplify the proof of Theorem 1)

    Helicoidal surfaces rotating/translating under the mean curvature flow

    Get PDF
    We describe all possible self-similar motions of immersed hypersurfaces in Euclidean space under the mean curvature flow and derive the corresponding hypersurface equations. Then we present a new two-parameter family of immersed helicoidal surfaces that rotate/translate with constant velocity under the flow. We look at their limiting behaviour as the pitch of the helicoidal motion goes to 0 and compare it with the limiting behaviour of the classical helicoidal minimal surfaces. Finally, we give a classification of the immersed cylinders in the family of constant mean curvature helicoidal surfaces.Comment: 21 pages, 22 figures, final versio

    The Abresch-Gromoll inequality in a non-smooth setting

    Get PDF
    We prove that the Abresch-Gromoll inequality holds on infinitesimally Hilbertian CD(K,N) spaces in the same form as the one available on smooth Riemannian manifolds

    Asymptotically Extrinsic Tamed Submanifolds

    Get PDF
    We study, from the extrinsic point of view, the structure at infinity of open submanifolds, ϕ : Mm → Mn(κ) isometrically immersed in the real space forms of constant sectional curvature κ ≤ 0.We shall use the decay of the second fundamental form of the so-called tamed immersions to obtain a description at infinity of the submanifold in the line of the structural results in Greene et al. (Int Math Res Not 1994:364–377, 1994) and Petrunin and Tuschmann (Math Ann 321:775–788, 2001) and an estimation from below of the number of its ends in terms of the volume growth of a special class of extrinsic domains, the extrinsic balls.Vicent Gimeno: Work partially supported by the Research Program of University Jaume I Project UJI-B2016-07, and DGI -MINECO Grant (FEDER) MTM2013-48371-C2-2-P. Vicente Palmer: Work partially supported by the Research Program of University Jaume I Project UJI-B2016-07, DGI -MINECO Grant (FEDER) MTM2013-48371-C2-2-P, and Generalitat Valenciana Grant PrometeoII/2014/064. G. Pacelli Bessa: Work partially supported by CNPq- Brazil grant # 301581/2013-4

    Dirichlet sigma models and mean curvature flow

    Full text link
    The mean curvature flow describes the parabolic deformation of embedded branes in Riemannian geometry driven by their extrinsic mean curvature vector, which is typically associated to surface tension forces. It is the gradient flow of the area functional, and, as such, it is naturally identified with the boundary renormalization group equation of Dirichlet sigma models away from conformality, to lowest order in perturbation theory. D-branes appear as fixed points of this flow having conformally invariant boundary conditions. Simple running solutions include the paper-clip and the hair-pin (or grim-reaper) models on the plane, as well as scaling solutions associated to rational (p, q) closed curves and the decay of two intersecting lines. Stability analysis is performed in several cases while searching for transitions among different brane configurations. The combination of Ricci with the mean curvature flow is examined in detail together with several explicit examples of deforming curves on curved backgrounds. Some general aspects of the mean curvature flow in higher dimensional ambient spaces are also discussed and obtain consistent truncations to lower dimensional systems. Selected physical applications are mentioned in the text, including tachyon condensation in open string theory and the resistive diffusion of force-free fields in magneto-hydrodynamics.Comment: 77 pages, 21 figure

    Discrete conformal maps: boundary value problems, circle domains, Fuchsian and Schottky uniformization

    Get PDF
    We discuss several extensions and applications of the theory of discretely conformally equivalent triangle meshes (two meshes are considered conformally equivalent if corresponding edge lengths are related by scale factors attached to the vertices). We extend the fundamental definitions and variational principles from triangulations to polyhedral surfaces with cyclic faces. The case of quadrilateral meshes is equivalent to the cross ratio system, which provides a link to the theory of integrable systems. The extension to cyclic polygons also brings discrete conformal maps to circle domains within the scope of the theory. We provide results of numerical experiments suggesting that discrete conformal maps converge to smooth conformal maps, with convergence rates depending on the mesh quality. We consider the Fuchsian uniformization of Riemann surfaces represented in different forms: as immersed surfaces in \mathbb {R}^{3}, as hyperelliptic curves, and as \mathbb {CP}^{1} modulo a classical Schottky group, i.e., we convert Schottky to Fuchsian uniformization. Extended examples also demonstrate a geometric characterization of hyperelliptic surfaces due to Schmutz Schaller
    • …