1,071 research outputs found
Reconstructing the Equation of State for Dark Energy In the Double Complex Symmetric Gravitational Theory
We propose to study the accelerating expansion of the universe in the double
complex symmetric gravitational theory (DCSGT). The universe we live in is
taken as the real part of the whole spacetime which is double
complex. By introducing the spatially flat FRW metric, not only the double
Friedmann Equations but also the two constraint conditions and
are obtained. Furthermore, using parametric ansatz, we reconstruct the
and for dark energy from real observational data. We
find that in the two cases of and , the
corresponding equations of state remain close to -1 at present
() and change from below -1 to above -1. The results illustrate that the
whole spacetime, i.e. the double complex spacetime , may be
either ordinary complex () or hyperbolic complex
(). And the fate of the universe would be Big Rip in the
future.Comment: 5 pages, 5 figures, accepted by Commun. Theor. Phy
Spherically symmetric vacuum solutions of modified gravity theory in higher dimensions
In this paper we investigate spherically symmetric vacuum solutions of
gravity in a higher dimensional spacetime. With this objective we construct a
system of non-linear differential equations, whose solutions depend on the
explicit form assumed for the function . We explicit
show that for specific classes of this function exact solutions from the field
equations are obtained; also we find approximated results for the metric tensor
for more general cases admitting close to the unity.Comment: 14 pages, no figure. New version accepted for publication in EPJ
Unexorcized ghost in DGP brane world
The braneworld model of Dvali-Gabadadze-Porrati realizes the
self-accelerating universe. However, it is known that this cosmological
solution contains a spin-2 ghost. We study the possibility of avoiding the
appearance of the ghost by slightly modifying the model, introducing the second
brane. First we consider a simple model without stabilization of the separation
of the brane. By changing the separation between the branes, we find we can
erase the spin-2 ghost. However, this can be done only at the expense of the
appearance of a spin-0 ghost instead. We discuss why these two different types
of ghosts are correlated. Then, we examine a model with stabilization of the
brane separation. Even in this case, we find that the correlation between
spin-0 and spin-2 ghosts remains. As a result we find we cannot avoid the
appearance of ghost by two-branes model.Comment: 19 pages, 1 figur
Cosmological model with interactions in the dark sector
A cosmological model is proposed for the current Universe consisted of
non-interacting baryonic matter and interacting dark components. The dark
energy and dark matter are coupled through their effective barotropic indexes,
which are considered as functions of the ratio between their energy densities.
It is investigated two cases where the ratio is asymptotically stable and their
parameters are adjusted by considering best fits to Hubble function data. It is
shown that the deceleration parameter, the densities parameters, and the
luminosity distance have the correct behavior which is expected for a viable
present scenario of the Universe.Comment: 6 pages, 8 figure
Model for a Universe described by a non-minimally coupled scalar field and interacting dark matter
In this work it is investigated the evolution of a Universe where a scalar
field, non-minimally coupled to space-time curvature, plays the role of
quintessence and drives the Universe to a present accelerated expansion. A
non-relativistic dark matter constituent that interacts directly with dark
energy is also considered, where the dark matter particle mass is assumed to be
proportional to the value of the scalar field. Two models for dark matter
pressure are considered: the usual one, pressureless, and another that comes
from a thermodynamic theory and relates the pressure with the coupling between
the scalar field and the curvature scalar. Although the model has a strong
dependence on the initial conditions, it is shown that the mixture consisted of
dark components plus baryonic matter and radiation can reproduce the expected
red-shift behavior of the deceleration parameter, density parameters and
luminosity distance.Comment: 11 pages and 6 figures. To appear in GR
Quantum driven Bounce of the future Universe
It is demonstrated that due to back-reaction of quantum effects, expansion of
the universe stops at its maximum and takes a turnaround. Later on, it
contracts to a very small size in finite future time. This phenomenon is
followed by a " bounce" with re-birth of an exponentially expanding
non-singular universe
Some FRW Models of Accelerating Universe with Dark Energy
The paper deals with a spatially homogeneous and isotropic FRW space-time
filled with perfect fluid and dark energy components. The two sources are
assumed to interact minimally, and therefore their energy momentum tensors are
conserved separately. A special law of variation for the Hubble parameter
proposed by Berman (1983) has been utilized to solve the field equations. The
Berman's law yields two explicit forms of the scale factor governing the FRW
space-time and constant values of deceleration parameter. The role of dark
energy with variable equation of state parameter has been studied in detail in
the evolution of FRW universe. It has been found that dark energy dominates the
universe at the present epoch, which is consistent with the observations. The
physical behavior of the universe is discussed in detail.Comment: 10 pages, 5 figure
Cosmology in massive gravity
We argue that more cosmological solutions in massive gravity can be obtained
if the metric tensor and the tensor defined by
St\"{u}ckelberg fields take the homogeneous and isotropic form. The standard
cosmology with matter and radiation dominations in the past can be recovered
and CDM model is easily obtained. The dynamical evolution of the
universe is modified at very early times.Comment: 4 pages, 1 figure,add more reference
Model- and calibration-independent test of cosmic acceleration
We present a calibration-independent test of the accelerated expansion of the
universe using supernova type Ia data. The test is also model-independent in
the sense that no assumptions about the content of the universe or about the
parameterization of the deceleration parameter are made and that it does not
assume any dynamical equations of motion. Yet, the test assumes the universe
and the distribution of supernovae to be statistically homogeneous and
isotropic. A significant reduction of systematic effects, as compared to our
previous, calibration-dependent test, is achieved. Accelerated expansion is
detected at significant level (4.3 sigma in the 2007 Gold sample, 7.2 sigma in
the 2008 Union sample) if the universe is spatially flat. This result depends,
however, crucially on supernovae with a redshift smaller than 0.1, for which
the assumption of statistical isotropy and homogeneity is less well
established.Comment: 13 pages, 2 figures, major change
Superinflation, quintessence, and nonsingular cosmologies
The dynamics of a universe dominated by a self-interacting nonminimally
coupled scalar field are considered. The structure of the phase space and
complete phase portraits are given. New dynamical behaviors include
superinflation (), avoidance of big bang singularities through
classical birth of the universe, and spontaneous entry into and exit from
inflation. This model is promising for describing quintessence as a
nonminimally coupled scalar field.Comment: 4 pages, 2 figure
- …
