2,067 research outputs found

    Microwave Response of V3Si Single Crystals: Evidence for Two-Gap Superconductivity

    Full text link
    The investigation of the temperature dependences of microwave surface impedance and complex conductivity of V3Si single crystals with different stoichiometry allowed to observe a number of peculiarities which are in remarkable contradiction with single-gap Bardeen-Cooper-Schrieffer theory. At the same time, they can be well described by two-band model of superconductivity, thus strongly evidencing the existence of two distinct energy gaps with zero-temperature values Delta1~1.8Tc and Delta2~0.95Tc in V3Si.Comment: Submitted to Europhysics Letter

    Three-band superconductivity and the order parameter that breaks time-reversal symmetry

    Full text link
    We consider a model of multiband superconductivity, inspired by iron pnictides, in which three bands are connected via repulsive pair-scattering terms. Generically, three distinct superconducting states arise within such a model. Two of them are straightforward generalizations of the two-gap order parameter while the third one corresponds to a time-reversal symmetry breaking order parameter, altogether absent within the two-band model. Potential observation of such a genuinely frustrated state would be a particularly vivid manifestation of the repulsive interactions being at the root of iron-based high temperature superconductivity. We construct the phase diagram of this model and discuss its relevance to the iron pnictides family of high temperature superconductors. We also study the case of the Josephson coupling between a two-band s' (or extended s-wave) superconductor and a single-gap s-wave superconductor, and the associated phase diagram.Comment: 9 pages, 9 figures. Added discussion and references, one new figure (Fig. 3

    Interaction of strongly correlated electrons and acoustical phonons

    Get PDF
    We investigate the interaction of correlated electrons with acoustical phonons using the extended Hubbard-Holstein model in which both, the electron-phonon interaction and the on-site Coulomb repulsion are considered to be strong. The Lang-Firsov canonical transformation allows to obtain mobile polarons for which a new diagram technique and generalized Wick's theorem is used. This allows to handle the Coulomb repulsion between the electrons emerged into a sea of phonon fields (\textit{phonon clouds}). The physics of emission and absorption of the collective phonon-field mode by the polarons is discussed in detail. Moreover, we have investigated the different behavior of optical and acoustical phonon clouds when propagating through the lattice. In the strong-coupling limit of the electron-phonon interaction, and in the normal as well as in the superconducting phase, chronological thermodynamical averages of products of acoustical phonon-cloud operators can be expressed by one-cloud operator averages. While the normal one-cloud propagator has the form of a Lorentzian, the anomalous one is of Gaussian form and considerably smaller. Therefore, the anomalous electron Green's functions can be considered to be more important than corresponding polarons functions, i.e., pairing of electrons without phonon-clouds is easier to achieve than pairing of polarons with such clouds.Comment: : 28 pages, 9 figures, revtex4. Invited paper for a special issue of Low Temperature Physics dedicated to the 20th anniversary of HTS

    Designing Algorithms for Optimization of Parameters of Functioning of Intelligent System for Radionuclide Myocardial Diagnostics

    Full text link
    The influence of the number of complex components of Fast Fourier transformation in analyzing the polar maps of radionuclide examination of myocardium at rest and stress on the functional efficiency of the system of diagnostics of pathologies of myocardium was explored, and there were defined their optimum values in the information sense, which allows increasing the efficiency of the algorithms of forming the diagnostic decision rules by reducing the capacity of the dictionary of features of recognition.The information-extreme sequential cluster algorithms of the selection of the dictionary of features, which contains both quantitative and category features were developed and the results of their work were compared. The modificatios of the algorithms of the selection of the dictionary were suggested, which allows increasing both the search speed of the optimal in the information sense dictionary and reducing its capacity by 40 %. We managed to get the faultless by the training matrix decision rules, the accuracy of which is in the exam mode asymptotically approaches the limit.It was experimentally confirmed that the implementation of the proposed algorithm of the diagnosing system training has allowed to reduce the minimum representative volume of the training matrix from 300 to 81 vectors-implementations of the classes of recognition of the functional myocardium state

    Diagrammatic theory for Periodic Anderson Model: Stationary property of the thermodynamic potential

    Full text link
    Diagrammatic theory for Periodic Anderson Model has been developed, supposing the Coulomb repulsion of ff- localized electrons as a main parameter of the theory. ff- electrons are strongly correlated and cc- conduction electrons are uncorrelated. Correlation function for ff- and mass operator for cc- electrons are determined. The Dyson equation for cc- and Dyson-type equation for ff- electrons are formulated for their propagators. The skeleton diagrams are defined for correlation function and thermodynamic functional. The stationary property of renormalized thermodynamic potential about the variation of the mass operator is established. The result is appropriate as for normal and as for superconducting state of the system.Comment: 12 pages, 10 figure

    Constraints on cosmic-ray propagation models from a global Bayesian analysis

    Full text link
    Research in many areas of modern physics such as, e.g., indirect searches for dark matter and particle acceleration in SNR shocks, rely heavily on studies of cosmic rays (CRs) and associated diffuse emissions (radio, microwave, X-rays, gamma rays). While very detailed numerical models of CR propagation exist, a quantitative statistical analysis of such models has been so far hampered by the large computational effort that those models require. Although statistical analyses have been carried out before using semi-analytical models (where the computation is much faster), the evaluation of the results obtained from such models is difficult, as they necessarily suffer from many simplifying assumptions, The main objective of this paper is to present a working method for a full Bayesian parameter estimation for a numerical CR propagation model. For this study, we use the GALPROP code, the most advanced of its kind, that uses astrophysical information, nuclear and particle data as input to self-consistently predict CRs, gamma rays, synchrotron and other observables. We demonstrate that a full Bayesian analysis is possible using nested sampling and Markov Chain Monte Carlo methods (implemented in the SuperBayeS code) despite the heavy computational demands of a numerical propagation code. The best-fit values of parameters found in this analysis are in agreement with previous, significantly simpler, studies also based on GALPROP.Comment: 19 figures, 3 tables, emulateapj.sty. A typo is fixed. To be published in the Astrophysical Journal v.728 (February 10, 2011 issue). Supplementary material can be found at http://www.g-vo.org/pub/GALPROP/GalpropBayesPaper

    Light-induced valley currents and magnetization in graphene rings

    Full text link
    We study the non-equilibrium dynamics in a mesoscopic graphene ring excited by picoseconds shaped electromagnetic pulses. We predict an ultrafast buildup of charge polarization, currents and orbital magnetization. Applying the light pulses identified here, non-equilibrium valley currents are generated in a graphene ring threaded by a stationary magnetic flux. We predict a finite graphene ring magnetization even for a vanishing charge current; the magnetization emerges due to the light-induced difference of the valley populations.Comment: 4 pages, 2 figures, submitted to Phys. Rev.
    corecore