391 research outputs found

    Quasi-normal modes of superfluid neutron stars

    Full text link
    We study non-radial oscillations of neutron stars with superfluid baryons, in a general relativistic framework, including finite temperature effects. Using a perturbative approach, we derive the equations describing stellar oscillations, which we solve by numerical integration, employing different models of nucleon superfluidity, and determining frequencies and gravitational damping times of the quasi-normal modes. As expected by previous results, we find two classes of modes, associated to superfluid and non-superfluid degrees of freedom, respectively. We study the temperature dependence of the modes, finding that at specific values of the temperature, the frequencies of the two classes of quasi-normal modes show avoided crossings, and their damping times become comparable. We also show that, when the temperature is not close to the avoided crossings, the frequencies of the modes can be accurately computed by neglecting the coupling between normal and superfluid degrees of freedom. Our results have potential implications on the gravitational wave emission from neutron stars.Comment: 16 pages, 7 figures, 2 table

    Dissipation in relativistic superfluid neutron stars

    Get PDF
    We analyze damping of oscillations of general relativistic superfluid neutron stars. To this aim we extend the method of decoupling of superfluid and normal oscillation modes first suggested in [Gusakov & Kantor PRD 83, 081304(R) (2011)]. All calculations are made self-consistently within the finite temperature superfluid hydrodynamics. The general analytic formulas are derived for damping times due to the shear and bulk viscosities. These formulas describe both normal and superfluid neutron stars and are valid for oscillation modes of arbitrary multipolarity. We show that: (i) use of the ordinary one-fluid hydrodynamics is a good approximation, for most of the stellar temperatures, if one is interested in calculation of the damping times of normal f-modes; (ii) for radial and p-modes such an approximation is poor; (iii) the temperature dependence of damping times undergoes a set of rapid changes associated with resonance coupling of neighboring oscillation modes. The latter effect can substantially accelerate viscous damping of normal modes in certain stages of neutron-star thermal evolution.Comment: 25 pages, 9 figures, 1 table, accepted for publication in MNRA

    Neutron star inner crust: reduction of shear modulus by nuclei finite size effect

    Full text link
    The elasticity of neutron star crust is important for adequate interpretation of observations. To describe elastic properties one should rely on theoretical models. The most widely used is Coulomb crystal model (system of point-like charges on neutralizing uniform background), in some works it is corrected for electron screening. These models neglect finite size of nuclei. This approximation is well justified except for the innermost crustal layers, where nuclei size becomes comparable with the inter-nuclear spacing. Still, even in those dense layers it seems reasonable to apply the Coulomb crystal result, if one assumes that nuclei are spherically symmetric: Coulomb interaction between them should be the same as interaction between point-like charges. This argument is indeed correct, however, as we point here, shear of crustal lattice generates (microscopic) quadrupole electrostatic potential in a vicinity of lattice cites, which induces deformation on the nuclei. We analyze this problem analytically within compressible liquid drop model, using ionic spheroid model (which is generalization of well known ion sphere model). In particular, for ground state crust composition the effective shear modulus is reduced for a factor of 1−u5/3/(2+3 u−4 u1/3)1-u^{5/3}/(2+3\,u-4\,u^{1/3}), where u is the filling factor (ratio of the nuclei volume to the volume of the cell). This result is universal and does not depend on the applied nucleon interaction model. For the innermost layers of inner crust u~0.2 leading to reduction of the shear modulus by ~25%, which can be important for correct interpretation of quasi-periodic oscillations in the tails of magnetar flares.Comment: 7 pages, submitted to MNRAS on Sept.

    Seismic signatures of strange stars with crust

    Get PDF
    We study acoustic oscillations (eigenfrequencies, velocity distributions, damping times) of normal crusts of strange stars. These oscillations are very specific because of huge density jump at the interface between the normal crust and the strange matter core. The oscillation problem is shown to be self-similar. For a low (but non-zero) multipolarity l the fundamental mode (without radial nodes) has a frequency ~300 Hz and mostly horizontal oscillation velocity; other pressure modes have frequencies >=20 kHz and almost radial oscillation velocities. The latter modes are similar to radial oscillations (have approximately the same frequencies and radial velocity profiles). The oscillation spectrum of strange stars with crust differs from the spectrum of neutron stars. If detected, acoustic oscillations would allow one to discriminate between strange stars with crust and neutron stars and constrain the mass and radius of the star.Comment: 15 pages, 3 figures, Accepted for publication in MNRA

    Shear viscosity of degenerate electron matter

    Full text link
    We calculate the partial electron shear viscosity ηee\eta_{ee} limited by electron-electron collisions in a strongly degenerate electron gas taking into account the Landau damping of transverse plasmons. The Landau damping strongly suppresses ηee\eta_{ee} in the domain of ultrarelativistic degenerate electrons and modifies its %asymptotic temperature behavior. The efficiency of the electron shear viscosity in the cores of white dwarfs and envelopes of neutron stars is analyzed.Comment: 16 pages, 4 figures, accepted to Journal of Physics

    Coulomb tunneling for fusion reactions in dense matter: Path integral Monte Carlo versus mean field

    Full text link
    We compare Path Integral Monte Carlo calculations by Militzer and Pollock (Phys. Rev. B 71, 134303, 2005) of Coulomb tunneling in nuclear reactions in dense matter to semiclassical calculations assuming WKB Coulomb barrier penetration through the radial mean-field potential. We find a very good agreement of two approaches at temperatures higher than ~1/5 of the ion plasma temperature. We obtain a simple parameterization of the mean field potential and of the respective reaction rates. We analyze Gamow-peak energies of reacting ions in various reaction regimes and discuss theoretical uncertainties of nuclear reaction rates taking carbon burning in dense stellar matter as an example.Comment: 13 pages, 7 figures, to appear in Phys. Rev.

    Hardware and Software for Determining the Thermal Properties of Rocks Under Close to Stratified Conditions

    Get PDF
    An instrument for determining the nonlinear thermal properties of rocks under natural conditions is proposed. Software is developed for processing the temperature readings, obtained from the instrument sensors, using mainly the theory of the solution of inverse problems for a parabolic-type nonlinear equation. Practical examples of the determination of the nonlinear thermal properties of some materials are presented. © 2014 Springer Science+Business Media New York
    • …
    corecore