138 research outputs found

    HH 114 MMS: a new chemically active outflow

    Full text link
    Context. A small group of bipolar protostellar outflows display strong emission from shock-tracer molecules such as SiO and CH3OH, and are generally referred to as "chemically active." The best-studied outflow from this group is the one in L 1157. Aims. We study the molecular emission from the bipolar outflow powered by the very young stellar object HH 114 MMS and compare its chemical composition with that of the L1157 outflow. Methods. We have used the IRAM 30m radio telescope to observe a number of transitions from CO, SiO, CH3OH, SO, CS, HCN, and HCO+ toward the HH 114 MMS outflow. The observations consist of maps and a two-position molecular survey. Results. The HH 114 MMS outflow presents strong emission from a number of shock-tracer molecules that dominate the appearance of the maps around the central source. The abundance of these molecules is comparable to the abundance in L 1157. Conclusions. The outflow from HH 114 MMS is a spectacular new case of a chemically active outflow.Comment: 4 pages, 3 figures. Accepted for publication in Astronomy & Astrophysic

    Non-isothermal filaments in equilibrium

    Full text link
    The physical properties of the so-called Ostriker isothermal filament (Ostriker 1964) have been classically used as benchmark to interpret the stability of the filaments observed in nearby clouds. However, recent continuum studies have shown that the internal structure of the filaments depart from the isothermality, typically exhibiting radially increasing temperature gradients. The presence of internal temperature gradients within filaments suggests that the equilibrium configuration of these objects should be therefore revisited. The main goal of this work is to theoretically explore how the equilibrium structure of a filament changes in a non-isothermal configuration. We solve the hydrostatic equilibrium equation assuming temperature gradients similar to those derived from observations. We obtain a new set of equilibrium solutions for non-isothermal filaments with both linear and asymptotically constant temperature gradients. Our results show that, for sufficiently large internal temperature gradients, a non-isothermal filament could present significantly larger masses per unit length and shallower density profiles than the isothermal filament without collapsing by its own gravity. We conclude that filaments can reach an equilibrium configuration under non-isothermal conditions. Detailed studies of both the internal mass distribution and temperature gradients within filaments are then needed in order to judge the physical state of filaments.Comment: 5 pages, 2 figures, accepted for publication in A&

    Fibers in the NGC1333 proto-cluster

    Get PDF
    Are the initial conditions for clustered star formation the same as for non-clustered star formation? To investigate the initial gas properties in young proto-clusters we carried out a comprehensive and high-sensitivity study of the internal structure, density, temperature, and kinematics of the dense gas content of the NGC1333 region in Perseus, one of the nearest and best studied embedded clusters. The analysis of the gas velocities in the Position-Position-Velocity space reveals an intricate underlying gas organization both in space and velocity. We identified a total of 14 velocity-coherent, (tran-)sonic structures within NGC1333, with similar physical and kinematic properties than those quiescent, star-forming (aka fertile) fibers previously identified in low-mass star-forming clouds. These fibers are arranged in a complex spatial network, build-up the observed total column density, and contain the dense cores and protostars in this cloud. Our results demonstrate that the presence of fibers is not restricted to low-mass clouds but can be extended to regions of increasing mass and complexity. We propose that the observational dichotomy between clustered and non-clustered star-forming regions might be naturally explained by the distinct spatial density of fertile fibers in these environments.Comment: 25 pages, 17 figures; Accepted for publication in A&

    Gravitational collapse of the OMC-1 region

    Get PDF
    We have investigated the global dynamical state of the Integral Shaped Filament in the Orion A cloud using new N2_2H+^+ (1-0) large-scale, IRAM30m observations. Our analysis of its internal gas dynamics reveals the presence of accelerated motions towards the Orion Nebula Cluster, showing a characteristic blue-shifted profile centred at the position of the OMC-1 South region. The properties of these observed gas motions (profile, extension, and magnitude) are consistent with the expected accelerations for the gravitational collapse of the OMC-1 region and explain both the physical and kinematic structure of this cloud.Comment: 5 pages, 2 figures; Accepted by A&

    The Musca cloud: A 6 pc-long velocity-coherent, sonic filament

    Full text link
    Filaments play a central role in the molecular clouds' evolution, but their internal dynamical properties remain poorly characterized. To further explore the physical state of these structures, we have investigated the kinematic properties of the Musca cloud. We have sampled the main axis of this filamentary cloud in 13^{13}CO and C18^{18}O (2--1) lines using APEX observations. The different line profiles in Musca shows that this cloud presents a continuous and quiescent velocity field along its \sim6.5 pc of length. With an internal gas kinematics dominated by thermal motions (i.e., σNT/cs1\sigma_{NT}/c_s\lesssim1) and large-scale velocity gradients, these results reveal Musca as the longest velocity-coherent, sonic-like object identified so far in the ISM. The transonic properties of Musca present a clear departure from the predicted supersonic velocity dispersions expected in the Larson's velocity dispersion-size relationship, and constitute the first observational evidence of a filament fully decoupled from the turbulent regime over multi-parsec scales.Comment: 12 pages, 6 figures; Accepted for publication in A&

    Chains of dense cores in the Taurus L1495/B213 complex

    Full text link
    (Abridged) We study the kinematics of the dense gas in the Taurus L1495/B213 filamentary region to investigate the mechanism of core formation. We use observations of N2H+(1-0) and C18O(2-1) carried out with the IRAM 30m telescope. We find that the dense cores in L1495/B213 are significantly clustered in linear chain-like groups about 0.5pc long. The internal motions in these chains are mostly subsonic and the velocity is continuous, indicating that turbulence dissipation in the cloud has occurred at the scale of the chains and not at the smaller scale of the individual cores. The chains also present an approximately constant abundance of N2H+ and radial intensity profiles that can be modeled with a density law that follows a softened power law. A simple analysis of the spacing between the cores using an isothermal cylinder model indicates that the cores have likely formed by gravitational fragmentation of velocity-coherent filaments. Combining our analysis of the cores with our previous study of the large-scale C18O emission from the cloud, we propose a two-step scenario of core formation in L1495/B213. In this scenario, named "fray and fragment," L1495/B213 originated from the supersonic collision of two flows. The collision produced a network of intertwined subsonic filaments or fibers ("fray" step). Some of these fibers accumulated enough mass to become gravitationally unstable and fragment into chains of closely-spaced cores. This scenario may also apply to other regions of star formation.Comment: 17 pages, 12 figures. Accepted for publication in Astronomy & Astrophysic

    Characterizing the line emission from molecular clouds. II. A comparative study of California, Perseus, and Orion A

    Full text link
    Aims.Aims. We characterize the molecular-line emission of three clouds whose star-formation rates span one order of magnitude: California, Perseus, and Orion A. Methods.Methods. We use stratified random sampling to select positions representing the different column density regimes of each cloud and observe them with the IRAM-30m telescope. We cover the 3 mm wavelength band and focus our analysis on CO, HCN, CS, HCO+, HNC, and N2H+. Results.Results. We find that the line intensities depend most strongly on the H2 column density. A secondary effect, especially visible in Orion A, is a dependence of the line intensities on the gas temperature. We explored a method that corrects for temperature variations and show that, when it is applied, the emission from the three clouds behaves very similarly. CO intensities vary weakly with column density, while the intensity of traditional dense-gas tracers such as HCN, CS, and HCO+ varies almost linearly with column density. N2H+ differs from all other species in that it traces only cold dense gas. The intensity of the rare HCN and CS isotopologs reveals additional temperature-dependent abundance variations. Overall, the clouds have similar chemical compositions that, as the depth increases, are sequentially dominated by photodissociation, gas-phase reactions, molecular freeze-out, and stellar feedback in the densest parts of Orion A. Our observations also allowed us to calculate line luminosities for each cloud, and a comparison with literature values shows good agreement. We used our HCN data to explore the behavior of the HCN conversion factor, finding that it is dominated by the emission from the outermost cloud layers. It also depends strongly on the gas kinetic temperature. Finally, we show that the HCN/CO ratio provides a gas volume density estimate, and that its correlation with the column density resembles that found in extragalactic observations.Comment: 36 pages, 19 figures, accepted for publication in A&

    Characterizing the line emission from molecular clouds. Stratified random sampling of the Perseus cloud

    Get PDF
    Context.Context. The traditional approach to characterize the structure of molecular clouds is to map their line emission. Aims.Aims. We aim to test and apply a stratified random sampling technique that can characterize the line emission from molecular clouds more efficiently than mapping. Methods.Methods. We sampled the molecular emission from the Perseus cloud using the H2 column density as a proxy. We divided the cloud into ten logarithmically spaced column density bins, and we randomly selected ten positions from each bin. The resulting 100 cloud positions were observed with the IRAM 30m telescope, covering the 3mm-wavelength band and parts of the 2 and 1mm bands. Results.Results. We focus our analysis on 11 molecular species detected toward most column density bins. In all cases, the line intensity is tightly correlated with the H2 column density. For the CO isotopologs, the trend is relatively flat, while for high-dipole moment species such as HCN, CS, and HCO+ the trend is approximately linear. We reproduce this behavior with a cloud model in which the gas density increases with column density, and where most species have abundance profiles characterized by an outer photodissociation edge and an inner freeze-out drop. The intensity behavior of the high-dipole moment species arises from a combination of excitation effects and molecular freeze out, with some modulation from optical depth. This quasi-linear dependence with the H2 column density makes the gas at low column densities dominate the cloud-integrated emission. It also makes the emission from most high-dipole moment species proportional to the cloud mass inside the photodissociation edge. Conclusions.Conclusions. Stratified random sampling is an efficient technique for characterizing the emission from whole molecular clouds. It shows that despite the complex appearance of Perseus, its molecular emission follows a relatively simple pattern.Comment: 27 pages, 19 figures, accepted for publication in A&

    Kinematics of dense gas in the L1495 filament

    Get PDF
    We study the kinematics of the dense gas of starless and protostellar cores traced by the N2D+(2-1), N2H+(1-0), DCO+(2-1), and H13CO+(1-0) transitions along the L1495 filament and the kinematic links between the cores and the surrounding molecular cloud. We measure velocity dispersions, local and total velocity gradients and estimate the specific angular momenta of 13 dense cores in the four transitions using the on-the-fly observations with the IRAM 30 m antenna. To study a possible connection to the filament gas, we use the fit results of the C18O(1-0) survey performed by Hacar et al. (2013). All cores show similar properties along the 10 pc-long filament. N2D+(2-1) shows the most centrally concentrated structure, followed by N2H+(1-0) and DCO+(2-1), which show similar spatial extent, and H13CO+(1-0). The non-thermal contribution to the velocity dispersion increases from higher to lower density tracers. The change of magnitude and direction of the total velocity gradients depending on the tracer used indicates that internal motions change at different depths within the cloud. N2D+ and N2H+ show smaller gradients than the lower density tracers DCO+ and H13CO+, implying a loss of specific angular momentum at small scales. At the level of cloud-core transition, the core's external envelope traced by DCO+ and H13CO+ is spinning up, consistent with conservation of angular momentum during core contraction. C18O traces the more extended cloud material whose kinematics is not affected by the presence of dense cores. The decrease in specific angular momentum towards the centres of the cores shows the importance of local magnetic fields to the small scale dynamics of the cores. The random distributions of angles between the total velocity gradient and large scale magnetic field suggests that the magnetic fields may become important only in the high density gas within dense cores.Comment: Accepted for publication in A&A. The abstract is shortene

    Survey of Orion Disks with ALMA (SODA) II: UV-driven disk mass loss in L1641 and L1647

    Full text link
    External FUV irradiation of protoplanetary disks has an important impact on their evolution and ability to form planets. However, nearby (<300 pc) star-forming regions lack sufficiently massive young stars, while the Trapezium Cluster and NGC 2024 have complicated star-formation histories and their O-type stars' intense radiation fields (>104G0>10^4\,G_0) destroy disks too quickly to study this process in detail. We study disk mass loss driven by intermediate (10 - 1000 G0G_0) FUV radiation fields in L1641 and L1647, where it is driven by more common A0 and B-type stars. Using the large (N=873) sample size offered by the Survey of Orion Disks with ALMA (SODA), we search for trends in the median disk dust mass with FUV field strength across the region as a whole and in two separate regions containing a large number of irradiated disks. For radiation fields between 1 - 100 G0G_0, the median disk mass in the most irradiated disks drops by a factor 2\sim 2 over the lifetime of the region, while the 95th percentile of disk masses drops by a factor 4 over this range. This effect is present in multiple populations of stars, and localized in space, to within 2 pc of ionizing stars. We fit an empirical irradiation - disk mass relation for the first time: Mdust,median=1.30.13+0.14log10(FFUV/G0)+5.20.19+0.18M_{\rm{dust,median}} = -1.3^{+0.14}_{-0.13} \log_{10}(F_{\rm{FUV}} / G_0) + 5.2^{+0.18}_{-0.19}. This work demonstrates that even intermediate FUV radiation fields have a significant impact on the evolution of protoplanetary disks.Comment: Accepted to A&A Letters. 5 pages, 4 figure
    corecore