419 research outputs found
Multiwavelength Observations of the Low Metallicity Blue Compact Dwarf Galaxy SBS 0335-052
New infrared and millimeter observations from Keck, Palomar, ISO, and OVRO
and archival data from the NRAO VLA and IRAS are presented for the low
metallicity blue compact dwarf galaxy SBS 0335-052. Mid-infrared imaging shows
this young star-forming system is compact (0.31"; 80 pc) at 12.5 microns. The
large Br-gamma equivalent width (235 Angstroms) measured from integral field
spectroscopy is indicative of a ~5 Myr starburst. The central source appears to
be optically thin in emission, containing both a warm (~80 K) and a hot (~210
K) dust component, and the overall interstellar radiation field is quite
intense, about 10,000 times the intensity in the solar neighborhood. CO
emission is not detected, though the galaxy shows an extremely high global H I
gas-to-dust mass ratio, high even for blue compact dwarfs. Finally, the
galaxy's mid-infrared-to-optical and mid-to-near-infrared luminosity ratios are
quite high, whereas its far-infrared-to-radio and far-infrared-to-optical flux
ratios are surprisingly similar to what is seen in normal star-forming
galaxies. The relatively high bolometric infrared-to-radio ratio is more easily
understood in the context of such a young system with negligible nonthermal
radio continuum emission. These new lines of evidence may outline features
common to primordial galaxies found at high redshift.Comment: 28 pages including 6 figures; accepted for publication in the
Astronomical Journa
On the Unusual Depletions toward Sk 155, or What Are the Small Magellanic Cloud Dust Grains Made of?
The dust in the Small Magellanic Cloud (SMC), an ideal analog of primordial
galaxies at high redshifts, differs markedly from that in the Milky Way by
exhibiting a steeply rising far-ultraviolet extinction curve, an absence of the
2175 Angstrom extinction feature, and a local minimum at ~12 micron in its
infrared emission spectrum, suggesting the lack of ultrasmall carbonaceous
grains (i.e. polycyclic aromatic hydrocarbon molecules) which are ubiquitously
seen in the Milky Way. While current models for the SMC dust all rely heavily
on silicates, recent observations of the SMC sightline toward Sk 155 indicated
that Si and Mg are essentially undepleted and the depletions of Fe range from
mild to severe, suggesting that metallic grains and/or iron oxides, instead of
silicates, may dominate the SMC dust. However, in this Letter we apply the
Kramers-Kronig relation to demonstrate that neither metallic grains nor iron
oxides are capable of accounting for the observed extinction; silicates remain
as an important contributor to the extinction, consistent with current models
for the SMC dust.Comment: 12 pages, 3 figures; The Astrophysical Journal Letters, in pres
Physical conditions in the gas phases of the giant HII region LMC-N11 unveiled by Herschel - I. Diffuse [CII] and [OIII] emission in LMC-N11B
(Abridged) The Magellanic Clouds provide a nearby laboratory for metal-poor
dwarf galaxies. The low dust abundance enhances the penetration of UV photons
into the interstellar medium (ISM), resulting in a relatively larger filling
factor of the ionized gas. Furthermore, there is likely a hidden molecular gas
reservoir probed by the [CII]157um line. We present Herschel/PACS maps in
several tracers, [CII], [OI]63um,145um, [NII]122um, [NIII]57um, and [OIII]88um
in the HII region N11B in the Large Magellanic Cloud. Halpha and [OIII]5007A
images were used as complementary data to investigate the effect of dust
extinction. Observations were interpreted with photoionization models to infer
the gas conditions and estimate the ionized gas contribution to the [CII]
emission. Photodissociation regions (PDRs) are probed through polycyclic
aromatic hydrocarbons (PAHs). We first study the distribution and properties of
the ionized gas. We then constrain the origin of [CII]157um by comparing to
tracers of the low-excitation ionized gas and of PDRs. [OIII] is dominated by
extended emission from the high-excitation diffuse ionized gas; it is the
brightest far-infrared line, ~4 times brighter than [CII]. The extent of the
[OIII] emission suggests that the medium is rather fragmented, allowing far-UV
photons to permeate into the ISM to scales of >30pc. Furthermore, by comparing
[CII] with [NII], we find that 95% of [CII] arises in PDRs, except toward the
stellar cluster for which as much as 15% could arise in the ionized gas. We
find a remarkable correlation between [CII]+[OI] and PAH emission, with [CII]
dominating the cooling in diffuse PDRs and [OI] dominating in the densest PDRs.
The combination of [CII] and [OI] provides a proxy for the total gas cooling in
PDRs. Our results suggest that PAH emission describes better the PDR gas
heating as compared to the total infrared emission.Comment: Accepted for publication in Astronomy and Astrophysics. Fixed
inverted line ratio in Sect. 5.
Spectroscopic FIR mapping of the disk and galactic wind of M82 with Herschel-PACS
[Abridged] We present maps of the main cooling lines of the neutral atomic
gas ([OI] at 63 and 145 micron and [CII] at 158 micron) and in the [OIII] 88
micron line of the starburst galaxy M82, carried out with the PACS spectrometer
on board the Herschel satellite. By applying PDR modeling we derive maps of the
main ISM physical parameters, including the [CII] optical depth, at
unprecedented spatial resolution (~300 pc). We can clearly kinematically
separate the disk from the outflow in all lines. The [CII] and [OI]
distributions are consistent with PDR emission both in the disk and in the
outflow. Surprisingly, in the outflow, the atomic and the ionized gas traced by
the [OIII] line both have a deprojected velocity of ~75 km/s, very similar to
the average velocity of the outflowing cold molecular gas (~ 100 km/s) and
several times smaller than the outflowing material detected in Halpha (~ 600
km/s). This suggests that the cold molecular and neutral atomic gas and the
ionized gas traced by the [OIII] 88 micron line are dynamically coupled to each
other but decoupled from the Halpha emitting gas. We propose a scenario where
cold clouds from the disk are entrained into the outflow by the winds where
they likely evaporate, surviving as small, fairly dense cloudlets (n_H\sim
500-1000 cm^-3, G_0\sim 500- 1000, T_gas\sim300 K). We show that the UV photons
provided by the starburst are sufficient to excite the PDR shells around the
molecular cores. The mass of the neutral atomic gas in the outflow is \gtrsim
5-12x 10^7 M_sun to be compared with that of the molecular gas (3.3 x 10^8
M_sun) and of the Halpha emitting gas (5.8 x 10^6 M_sun). The mass loading
factor, (dM/dt)/SFR, of the molecular plus neutral atomic gas in the outflow is
~ 2. Energy and momentum driven outflow models can explain the data equally
well, if all the outflowing gas components are taken into account.Comment: 26 pages, 23 figures, 4 Tables, Accepted for publication in Astronomy
& Astrophysic
Production of s-process elements in AGB stars as revealed by Gaia GSP-spec abundances
The recent parameterisation by the GSP-spec module of Gaia/RVS spectra has
produced an homogeneous catalogue of about 174,000 AGB stars. Among the 13
chemical elements presented in this catalogue, the abundance of 2 of them (Ce
and Nd) have been estimated in most of these AGBs. These 2 species formed by
slow n-captures in the interior of low- and intermediate-mass stars, belong to
the family of 2nd-peak s-process elements. We defined a working sample of
19,544 AGB stars with high-quality Ce and/or Nd abundances, selected by
applying a specific combination of the GSP-spec quality flags. We compared
these abundances with the yield production predicted by AGB stars evolutionary
models. We found a good correlation between the Ce and Nd abundances,
confirming the high quality of the derived abundances and that these species
indeed belong to the same s-process family. We also found higher Ce and Nd
abundances for more evolved AGB stars of similar metallicity, illustrating the
successive mixing episodes enriching the AGB star surface. We then compared the
observed Ce and Nd abundances with the FRUITY and Monash AGB yields and found
that the higher Ce and Nd abundances cannot be explained by AGB stars of masses
higher than 5Msun. In contrast, the yields predicted by both models for AGB
stars with an initial mass between ~1.5 and ~2.5Mssun and metallicities between
~-0.5 and ~0.0dex are fully compatible with the observed GSP-spec abundances.
This work based on the largest catalogue of high-quality second-peak s-element
abundances in O-rich AGB stars allows evolutionary models to be constrained and
confirms the fundamental role played by low- and intermediate-mass stars in the
enrichment of the Universe in these chemical species.Comment: Accepted by A&A in october, 202
Towards an Understanding of the Mid-Infrared Surface Brightness of Normal Galaxies
We report a mid-infrared color and surface brightness analysis of IC 10, NGC
1313, and NGC 6946, three of the nearby galaxies studied under the Infrared
Space Observatory Key Project on Normal Galaxies. Images with < 9 arcsecond
(170 pc) resolution of these nearly face-on, late-type galaxies were obtained
using the LW2 (6.75 mu) and LW3 (15 mu) ISOCAM filters. Though their global
I_nu(6.75 mu)/I_nu(15 mu) flux ratios are similar and typical of normal
galaxies, they show distinct trends of this color ratio with mid-infrared
surface brightness. We find that I_nu(6.75 mu)/I_nu(15 mu) ~< 1 only occurs for
regions of intense heating activity where the continuum rises at 15 micron and
where PAH destruction can play an important role. The shape of the
color-surface brightness trend also appears to depend, to the second-order, on
the hardness of the ionizing radiation. We discuss these findings in the
context of a two-component model for the phases of the interstellar medium and
suggest that star formation intensity is largely responsible for the
mid-infrared surface brightness and colors within normal galaxies, whereas
differences in dust column density are the primary drivers of variations in the
mid-infrared surface brightness between the disks of normal galaxies.Comment: 19 pages, 6 figures, uses AAS LaTeX; to appear in the November
Astronomical Journa
Obscuration in AGNs: near-infrared luminosity relations and dust colors
We combine two approaches to isolate the AGN luminosity at near-infrared
wavelengths and relate the near-IR pure AGN luminosity to other tracers of the
AGN. Using integral-field spectroscopic data of an archival sample of 51 local
AGNs, we estimate the fraction of non-stellar light by comparing the nuclear
equivalent width of the stellar 2.3 micron CO absorption feature with the
intrinsic value for each galaxy. We compare this fraction to that derived from
a spectral decomposition of the integrated light in the central arc second and
find them to be consistent with each other. Using our estimates of the near-IR
AGN light, we find a strong correlation with presumably isotropic AGN tracers.
We show that a significant offset exists between type 1 and type 2 sources in
the sense that type 1 sources are 7 (10) times brighter in the near-IR at log
L_MIR = 42.5 (log L_X = 42.5). These offsets only becomes clear when treating
infrared type 1 sources as type 1 AGNs.
All AGNs have very red near-to-mid-IR dust colors. This, as well as the range
of observed near-IR temperatures, can be explained with a simple model with
only two free parameters: the obscuration to the hot dust and the ratio between
the warm and hot dust areas. We find obscurations of A_V (hot) = 5 - 15 mag for
infrared type 1 sources and A_V (hot) = 15 - 35 mag for type 2 sources. The
ratio of hot dust to warm dust areas of about 1000 is nicely consistent with
the ratio of radii of the respective regions as found by infrared
interferometry.Comment: 17 pages, 10 Figures, 3 Tables, accepted by A&
- …