359 research outputs found
Quantum Dots at Room Temperature carved out from Few-Layer Graphene
We present graphene quantum dots endowed with addition energies as large as
1.6 eV, fabricated by the controlled rupture of a graphene sheet subjected to a
large electron current in air. The size of the quantum dot islands is estimated
to be in the 1 nm range. The large addition energies allow for Coulomb blockade
at room temperature, with possible application to single-electron devices
Amplitude calibration of 2D mechanical resonators by nonlinear optical transduction
Contactless characterization of mechanical resonances using Fabry-Perot
interferometry is a powerful tool to study the mechanical and dynamical
properties of atomically thin membranes. However, amplitude calibration is
often not performed, or only possible by making assumptions on the device
parameters such as its mass or the temperature. In this work, we demonstrate a
calibration technique that directly measures the oscillation amplitude by
detecting higher harmonics that arise from nonlinearities in the optical
transduction. Employing this technique, we calibrate the resonance amplitude of
two-dimensional nanomechanical resonators, without requiring knowledge of their
mechanical properties, actuation force, geometric distances or the laser
intensity
Investigating laser induced phase engineering in MoS2 transistors
Phase engineering of MoS2 transistors has recently been demonstrated and has
led to record low contact resistances. The phase patterning of MoS2 flakes with
laser radiation has also been realized via spectroscopic methods, which invites
the potential of controlling the metallic and semiconducting phases of MoS2
transistors by simple light exposure. Nevertheless, the fabrication and
demonstration of laser patterned MoS2 devices starting from the metallic
polymorph has not been demonstrated yet. Here, we study the effects of laser
radiation on 1T/1T'-MoS2 transistors with the prospect of driving an in-situ
phase transition to the 2H-polymorph through light exposure. We find that
although the Raman peaks of 2H-MoS2 become more prominent and the ones from the
1T/1T' phase fade after the laser exposure, the semiconducting properties of
the laser patterned devices are not fully restored and the laser treatment
ultimately leads to degradation of the transport channel
Thickness dependent interlayer transport in vertical MoS2 Josephson junctions
We report on observations of thickness dependent Josephson coupling and
multiple Andreev reflections (MAR) in vertically stacked molybdenum disulfide
(MoS2) - molybdenum rhenium (MoRe) Josephson junctions. MoRe, a chemically
inert superconductor, allows for oxide free fabrication of high transparency
vertical MoS2 devices. Single and bilayer MoS2 junctions display relatively
large critical currents (up to 2.5 uA) and the appearance of sub-gap structure
given by MAR. In three and four layer thick devices we observe orders of
magnitude lower critical currents (sub-nA) and reduced quasiparticle gaps due
to proximitized MoS2 layers in contact with MoRe. We anticipate that this
device architecture could be easily extended to other 2D materials.Comment: 18 pages, 6 figures including Supporting Informatio
- …
