7 research outputs found
Math saves the forest
Wireless sensor networks are decentralised networks consisting of sensors that can detect events and transmit data to neighbouring sensors. Ideally, this data is eventually gathered in a central base station. Wireless sensor networks have many possible applications. For example, they can be used to detect gas leaks in houses or fires in a forest.\ud
In this report, we study data gathering in wireless sensor networks with the objective of minimising the time to send event data to the base station. We focus on sensors with a limited cache and take into account both node and transmission failures. We present two cache strategies and analyse the performance of these strategies for specific networks. For the case without node failures we give the expected arrival time of event data at the base station for both a line and a 2D grid network. For the case with node failures we study the expected arrival time on two-dimensional networks through simulation, as well as the influence of the broadcast range
A preferential attachment model with random initial degrees
In this paper, a random graph process is studied and its
degree sequence is analyzed. Let be an i.i.d. sequence. The
graph process is defined so that, at each integer time , a new vertex, with
edges attached to it, is added to the graph. The new edges added at time
t are then preferentially connected to older vertices, i.e., conditionally on
, the probability that a given edge is connected to vertex i is
proportional to , where is the degree of vertex
at time , independently of the other edges. The main result is that the
asymptotical degree sequence for this process is a power law with exponent
, where is the power-law exponent
of the initial degrees and the exponent predicted
by pure preferential attachment. This result extends previous work by Cooper
and Frieze, which is surveyed.Comment: In the published form of the paper, the proof of Proposition 2.1 is
incomplete. This version contains the complete proo