7 research outputs found
Environmental Effects on TPB Wavelength-Shifting Coatings
The scintillation detection systems of liquid argon time projection chambers
(LArTPCs) require wavelength shifters to detect the 128 nm scintillation light
produced in liquid argon. Tetraphenyl butadiene (TPB) is a fluorescent material
that can shift this light to a wavelength of 425 nm, lending itself well to use
in these detectors. We can coat the glass of photomultiplier tubes (PMTs) with
TPB or place TPB-coated plates in front of the PMTs.
In this paper, we investigate the degradation of a chemical TPB coating in a
laboratory or factory environment to assess the viability of long-term TPB film
storage prior to its initial installation in an LArTPC. We present evidence for
severe degradation due to common fluorescent lights and ambient sunlight in
laboratories, with potential losses at the 40% level in the first day and
eventual losses at the 80% level after a month of exposure. We determine the
degradation is due to wavelengths in the UV spectrum, and we demonstrate
mitigating methods for retrofitting lab and factory environments
The ArgoNeuT Detector in the NuMI Low-Energy beam line at Fermilab
The ArgoNeuT liquid argon time projection chamber has collected thousands of
neutrino and antineutrino events during an extended run period in the NuMI
beam-line at Fermilab. This paper focuses on the main aspects of the detector
layout and related technical features, including the cryogenic equipment, time
projection chamber, read-out electronics, and off-line data treatment. The
detector commissioning phase, physics run, and first neutrino event displays
are also reported. The characterization of the main working parameters of the
detector during data-taking, the ionization electron drift velocity and
lifetime in liquid argon, as obtained from through-going muon data complete the
present report.Comment: 43 pages, 27 figures, 5 tables - update referenc
Analysis of a Large Sample of Neutrino-Induced Muons with the ArgoNeuT Detector
ArgoNeuT, or Argon Neutrino Test, is a 170 liter liquid argon time projection
chamber designed to collect neutrino interactions from the NuMI beam at Fermi
National Accelerator Laboratory. ArgoNeuT operated in the NuMI low-energy beam
line directly upstream of the MINOS Near Detector from September 2009 to
February 2010, during which thousands of neutrino and antineutrino events were
collected. The MINOS Near Detector was used to measure muons downstream of
ArgoNeuT. Though ArgoNeuT is primarily an R&D project, the data collected
provide a unique opportunity to measure neutrino cross sections in the 0.1-10
GeV energy range. Fully reconstructing the muon from these interactions is
imperative for these measurements. This paper focuses on the complete kinematic
reconstruction of neutrino-induced through-going muons tracks. Analysis of this
high statistics sample of minimum ionizing tracks demonstrates the reliability
of the geometric and calorimetric reconstruction in the ArgoNeuT detector